Cargando…
Repetitive Direct Comparison Method for Odor Sensing
Olfactory sensors are one of the most anticipated applications of gas sensors. To distinguish odors—complex mixtures of gas species, it is necessary to extract sensor responses originating from the target odors. However, the responses of gas sensors tend to be affected by interfering gases with much...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046632/ https://www.ncbi.nlm.nih.gov/pubmed/36979580 http://dx.doi.org/10.3390/bios13030368 |
_version_ | 1785013722297663488 |
---|---|
author | Imamura, Gaku Minami, Kosuke Yoshikawa, Genki |
author_facet | Imamura, Gaku Minami, Kosuke Yoshikawa, Genki |
author_sort | Imamura, Gaku |
collection | PubMed |
description | Olfactory sensors are one of the most anticipated applications of gas sensors. To distinguish odors—complex mixtures of gas species, it is necessary to extract sensor responses originating from the target odors. However, the responses of gas sensors tend to be affected by interfering gases with much higher concentrations than target odor molecules. To realize practical applications of olfactory sensors, extracting minute sensor responses of odors from major interfering gases is required. In this study, we propose a repetitive direct comparison (rDC) method, which can highlight the difference in odors by alternately injecting the two target odors into a gas sensor. We verified the feasibility of the rDC method on chocolates with two different flavors by using a sensor system based on membrane-type surface stress sensors (MSS). The odors of the chocolates were measured by the rDC method, and the signal-to-noise ratios (S/N) of the measurements were evaluated. The results showed that the rDC method achieved improved S/N compared to a typical measurement. The result also indicates that sensing signals could be enhanced for a specific combination of receptor materials of MSS and target odors. |
format | Online Article Text |
id | pubmed-10046632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100466322023-03-29 Repetitive Direct Comparison Method for Odor Sensing Imamura, Gaku Minami, Kosuke Yoshikawa, Genki Biosensors (Basel) Article Olfactory sensors are one of the most anticipated applications of gas sensors. To distinguish odors—complex mixtures of gas species, it is necessary to extract sensor responses originating from the target odors. However, the responses of gas sensors tend to be affected by interfering gases with much higher concentrations than target odor molecules. To realize practical applications of olfactory sensors, extracting minute sensor responses of odors from major interfering gases is required. In this study, we propose a repetitive direct comparison (rDC) method, which can highlight the difference in odors by alternately injecting the two target odors into a gas sensor. We verified the feasibility of the rDC method on chocolates with two different flavors by using a sensor system based on membrane-type surface stress sensors (MSS). The odors of the chocolates were measured by the rDC method, and the signal-to-noise ratios (S/N) of the measurements were evaluated. The results showed that the rDC method achieved improved S/N compared to a typical measurement. The result also indicates that sensing signals could be enhanced for a specific combination of receptor materials of MSS and target odors. MDPI 2023-03-10 /pmc/articles/PMC10046632/ /pubmed/36979580 http://dx.doi.org/10.3390/bios13030368 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Imamura, Gaku Minami, Kosuke Yoshikawa, Genki Repetitive Direct Comparison Method for Odor Sensing |
title | Repetitive Direct Comparison Method for Odor Sensing |
title_full | Repetitive Direct Comparison Method for Odor Sensing |
title_fullStr | Repetitive Direct Comparison Method for Odor Sensing |
title_full_unstemmed | Repetitive Direct Comparison Method for Odor Sensing |
title_short | Repetitive Direct Comparison Method for Odor Sensing |
title_sort | repetitive direct comparison method for odor sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046632/ https://www.ncbi.nlm.nih.gov/pubmed/36979580 http://dx.doi.org/10.3390/bios13030368 |
work_keys_str_mv | AT imamuragaku repetitivedirectcomparisonmethodforodorsensing AT minamikosuke repetitivedirectcomparisonmethodforodorsensing AT yoshikawagenki repetitivedirectcomparisonmethodforodorsensing |