Cargando…
Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators
Nature provides a considerable number of good examples for simple and very efficient joint assemblies. One example is the enormously flexible cervical spine of American barn owls, which consists of 14 cervical vertebrae. Each pair of vertebrae produces a comparatively small individual movement in or...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046743/ https://www.ncbi.nlm.nih.gov/pubmed/36975347 http://dx.doi.org/10.3390/biomimetics8010117 |
_version_ | 1785013750336585728 |
---|---|
author | Löffler, Robin Tremmel, Stephan Hornfeck, Rüdiger |
author_facet | Löffler, Robin Tremmel, Stephan Hornfeck, Rüdiger |
author_sort | Löffler, Robin |
collection | PubMed |
description | Nature provides a considerable number of good examples for simple and very efficient joint assemblies. One example is the enormously flexible cervical spine of American barn owls, which consists of 14 cervical vertebrae. Each pair of vertebrae produces a comparatively small individual movement in order to provide a large overall movement of the entire cervical spine. The biomimetic replication of such joints is difficult due to the delicate and geometric unrestricted joint shapes as well as the muscles that have to be mimicked. Using X-ray as well as micro-computed tomography images and with the utilisation of additive manufacturing, it was possible to produce the owl neck vertebrae in scaled-up form, to analyse them and then to transfer them into technically usable joint assemblies. The muscle substitution of these joints was realised by smart materials actuators in the form of shape memory alloy wire actuators. This actuator technology is outstanding for its muscle-like movement and for its high-energy density. The disadvantage of this wire actuator technology is the low rate of contraction, which means that a large length of wire has to be installed to generate adequate movement. For this reason, the actuator wires were integrated into additively manufactured carrier components to mimic biological joints. This resulted in joint designs that compensate for the disadvantages of the small contraction of the actuators by intelligently installing large wire lengths on comparatively small installation spaces, while also providing a sufficient force output. With the help of a test rig, the developed technical joint variants are examined and evaluated. This demonstrated the technical applicability of this biomimetic joints. |
format | Online Article Text |
id | pubmed-10046743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100467432023-03-29 Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators Löffler, Robin Tremmel, Stephan Hornfeck, Rüdiger Biomimetics (Basel) Article Nature provides a considerable number of good examples for simple and very efficient joint assemblies. One example is the enormously flexible cervical spine of American barn owls, which consists of 14 cervical vertebrae. Each pair of vertebrae produces a comparatively small individual movement in order to provide a large overall movement of the entire cervical spine. The biomimetic replication of such joints is difficult due to the delicate and geometric unrestricted joint shapes as well as the muscles that have to be mimicked. Using X-ray as well as micro-computed tomography images and with the utilisation of additive manufacturing, it was possible to produce the owl neck vertebrae in scaled-up form, to analyse them and then to transfer them into technically usable joint assemblies. The muscle substitution of these joints was realised by smart materials actuators in the form of shape memory alloy wire actuators. This actuator technology is outstanding for its muscle-like movement and for its high-energy density. The disadvantage of this wire actuator technology is the low rate of contraction, which means that a large length of wire has to be installed to generate adequate movement. For this reason, the actuator wires were integrated into additively manufactured carrier components to mimic biological joints. This resulted in joint designs that compensate for the disadvantages of the small contraction of the actuators by intelligently installing large wire lengths on comparatively small installation spaces, while also providing a sufficient force output. With the help of a test rig, the developed technical joint variants are examined and evaluated. This demonstrated the technical applicability of this biomimetic joints. MDPI 2023-03-11 /pmc/articles/PMC10046743/ /pubmed/36975347 http://dx.doi.org/10.3390/biomimetics8010117 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Löffler, Robin Tremmel, Stephan Hornfeck, Rüdiger Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators |
title | Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators |
title_full | Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators |
title_fullStr | Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators |
title_full_unstemmed | Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators |
title_short | Owl-Neck-Spine-Inspired, Additively Manufactured, Joint Assemblies with Shape Memory Alloy Wire Actuators |
title_sort | owl-neck-spine-inspired, additively manufactured, joint assemblies with shape memory alloy wire actuators |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046743/ https://www.ncbi.nlm.nih.gov/pubmed/36975347 http://dx.doi.org/10.3390/biomimetics8010117 |
work_keys_str_mv | AT lofflerrobin owlneckspineinspiredadditivelymanufacturedjointassemblieswithshapememoryalloywireactuators AT tremmelstephan owlneckspineinspiredadditivelymanufacturedjointassemblieswithshapememoryalloywireactuators AT hornfeckrudiger owlneckspineinspiredadditivelymanufacturedjointassemblieswithshapememoryalloywireactuators |