Cargando…
Efficient Pause Extraction and Encode Strategy for Alzheimer’s Disease Detection Using Only Acoustic Features from Spontaneous Speech
Clinical studies have shown that speech pauses can reflect the cognitive function differences between Alzheimer’s Disease (AD) and non-AD patients, while the value of pause information in AD detection has not been fully explored. Herein, we propose a speech pause feature extraction and encoding stra...
Autores principales: | Liu, Jiamin, Fu, Fan, Li, Liang, Yu, Junxiao, Zhong, Dacheng, Zhu, Songsheng, Zhou, Yuxuan, Liu, Bin, Li, Jianqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046767/ https://www.ncbi.nlm.nih.gov/pubmed/36979287 http://dx.doi.org/10.3390/brainsci13030477 |
Ejemplares similares
-
Chunks, pauses, and holistic processing in Mandarin spontaneous speech
por: Xie, Dongyue, et al.
Publicado: (2023) -
DIA-TTS: Deep-Inherited Attention-Based Text-to-Speech Synthesizer
por: Yu, Junxiao, et al.
Publicado: (2022) -
Temporal Integration of Text Transcripts and Acoustic Features for Alzheimer's Diagnosis Based on Spontaneous Speech
por: Martinc, Matej, et al.
Publicado: (2021) -
Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech
por: Khalighinejad, Bahar, et al.
Publicado: (2017) -
Acoustic and Language Based Deep Learning Approaches for Alzheimer's Dementia Detection From Spontaneous Speech
por: Mahajan, Pranav, et al.
Publicado: (2021)