Cargando…
Protein Design Using Physics Informed Neural Networks
The inverse protein folding problem, also known as protein sequence design, seeks to predict an amino acid sequence that folds into a specific structure and performs a specific function. Recent advancements in machine learning techniques have been successful in generating functional sequences, outpe...
Autores principales: | Omar, Sara Ibrahim, Keasar, Chen, Ben-Sasson, Ariel J., Haber, Eldad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046838/ https://www.ncbi.nlm.nih.gov/pubmed/36979392 http://dx.doi.org/10.3390/biom13030457 |
Ejemplares similares
-
Mimetic Neural Networks: A Unified Framework for Protein Design and Folding
por: Eliasof, Moshe, et al.
Publicado: (2022) -
Predicting Voltammetry Using Physics-Informed Neural
Networks
por: Chen, Haotian, et al.
Publicado: (2022) -
Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
por: Berrone, S., et al.
Publicado: (2023) -
A neural network for information seeking
por: White, J. Kael, et al.
Publicado: (2019) -
Wavelets based physics informed neural networks to solve non-linear differential equations
por: Uddin, Ziya, et al.
Publicado: (2023)