Cargando…
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler ar...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046910/ https://www.ncbi.nlm.nih.gov/pubmed/36980430 http://dx.doi.org/10.3390/diagnostics13061122 |
_version_ | 1785013790250631168 |
---|---|
author | García-Murillo, Daniel Guillermo Álvarez-Meza, Andrés Marino Castellanos-Dominguez, Cesar German |
author_facet | García-Murillo, Daniel Guillermo Álvarez-Meza, Andrés Marino Castellanos-Dominguez, Cesar German |
author_sort | García-Murillo, Daniel Guillermo |
collection | PubMed |
description | This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems. |
format | Online Article Text |
id | pubmed-10046910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100469102023-03-29 KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification García-Murillo, Daniel Guillermo Álvarez-Meza, Andrés Marino Castellanos-Dominguez, Cesar German Diagnostics (Basel) Article This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems. MDPI 2023-03-16 /pmc/articles/PMC10046910/ /pubmed/36980430 http://dx.doi.org/10.3390/diagnostics13061122 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article García-Murillo, Daniel Guillermo Álvarez-Meza, Andrés Marino Castellanos-Dominguez, Cesar German KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification |
title | KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification |
title_full | KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification |
title_fullStr | KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification |
title_full_unstemmed | KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification |
title_short | KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification |
title_sort | kcs-fcnet: kernel cross-spectral functional connectivity network for eeg-based motor imagery classification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046910/ https://www.ncbi.nlm.nih.gov/pubmed/36980430 http://dx.doi.org/10.3390/diagnostics13061122 |
work_keys_str_mv | AT garciamurillodanielguillermo kcsfcnetkernelcrossspectralfunctionalconnectivitynetworkforeegbasedmotorimageryclassification AT alvarezmezaandresmarino kcsfcnetkernelcrossspectralfunctionalconnectivitynetworkforeegbasedmotorimageryclassification AT castellanosdominguezcesargerman kcsfcnetkernelcrossspectralfunctionalconnectivitynetworkforeegbasedmotorimageryclassification |