Cargando…

KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification

This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler ar...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Murillo, Daniel Guillermo, Álvarez-Meza, Andrés Marino, Castellanos-Dominguez, Cesar German
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046910/
https://www.ncbi.nlm.nih.gov/pubmed/36980430
http://dx.doi.org/10.3390/diagnostics13061122
_version_ 1785013790250631168
author García-Murillo, Daniel Guillermo
Álvarez-Meza, Andrés Marino
Castellanos-Dominguez, Cesar German
author_facet García-Murillo, Daniel Guillermo
Álvarez-Meza, Andrés Marino
Castellanos-Dominguez, Cesar German
author_sort García-Murillo, Daniel Guillermo
collection PubMed
description This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems.
format Online
Article
Text
id pubmed-10046910
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100469102023-03-29 KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification García-Murillo, Daniel Guillermo Álvarez-Meza, Andrés Marino Castellanos-Dominguez, Cesar German Diagnostics (Basel) Article This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems. MDPI 2023-03-16 /pmc/articles/PMC10046910/ /pubmed/36980430 http://dx.doi.org/10.3390/diagnostics13061122 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
García-Murillo, Daniel Guillermo
Álvarez-Meza, Andrés Marino
Castellanos-Dominguez, Cesar German
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
title KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
title_full KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
title_fullStr KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
title_full_unstemmed KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
title_short KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
title_sort kcs-fcnet: kernel cross-spectral functional connectivity network for eeg-based motor imagery classification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046910/
https://www.ncbi.nlm.nih.gov/pubmed/36980430
http://dx.doi.org/10.3390/diagnostics13061122
work_keys_str_mv AT garciamurillodanielguillermo kcsfcnetkernelcrossspectralfunctionalconnectivitynetworkforeegbasedmotorimageryclassification
AT alvarezmezaandresmarino kcsfcnetkernelcrossspectralfunctionalconnectivitynetworkforeegbasedmotorimageryclassification
AT castellanosdominguezcesargerman kcsfcnetkernelcrossspectralfunctionalconnectivitynetworkforeegbasedmotorimageryclassification