Cargando…
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler ar...
Autores principales: | García-Murillo, Daniel Guillermo, Álvarez-Meza, Andrés Marino, Castellanos-Dominguez, Cesar German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046910/ https://www.ncbi.nlm.nih.gov/pubmed/36980430 http://dx.doi.org/10.3390/diagnostics13061122 |
Ejemplares similares
-
Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2021) -
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators
por: Caicedo-Acosta, Julian, et al.
Publicado: (2021) -
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity
por: Collazos-Huertas, Diego Fabian, et al.
Publicado: (2023) -
FCNet: Stereo 3D Object Detection with Feature Correlation Networks
por: Wu, Yingyu, et al.
Publicado: (2022) -
Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills
por: Tobón-Henao, Mateo, et al.
Publicado: (2022)