Cargando…
Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage
We previously found that osteopontin (OPN) played a role in hypoxia–ischemia (HI) brain damage. However, its underlying mechanism is still unknown. Bioinformatics analysis revealed that the OPN protein was linked to the lysosomal cathepsin B (CTSB) and galectin-3 (GAL-3) proteins after HI exposure....
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046941/ https://www.ncbi.nlm.nih.gov/pubmed/36980197 http://dx.doi.org/10.3390/cells12060854 |
_version_ | 1785013797989122048 |
---|---|
author | Gai, Chengcheng Zhao, Yijing Xin, Danqing Li, Tingting Cheng, Yahong Jiang, Zige Song, Yan Liu, Dexiang Wang, Zhen |
author_facet | Gai, Chengcheng Zhao, Yijing Xin, Danqing Li, Tingting Cheng, Yahong Jiang, Zige Song, Yan Liu, Dexiang Wang, Zhen |
author_sort | Gai, Chengcheng |
collection | PubMed |
description | We previously found that osteopontin (OPN) played a role in hypoxia–ischemia (HI) brain damage. However, its underlying mechanism is still unknown. Bioinformatics analysis revealed that the OPN protein was linked to the lysosomal cathepsin B (CTSB) and galectin-3 (GAL-3) proteins after HI exposure. In the present study, we tested the hypothesis that OPN was able to play a critical role in the lysosomal damage of microglia/macrophages following HI insult in neonatal mice. The results showed that OPN expression was enhanced, especially in microglia/macrophages, and colocalized with lysosomal-associated membrane protein 1 (LAMP1) and GAL-3; this was accompanied by increased LAMP1 and GAL-3 expression, CTSB leakage, as well as impairment of autophagic flux in the early stage of the HI process. In addition, the knockdown of OPN expression markedly restored lysosomal function with significant improvements in the autophagic flux after HI insult. Interestingly, cleavage of OPN was observed in the ipsilateral cortex following HI. The wild-type OPN and C-terminal OPN (Leu152-Asn294), rather than N-terminal OPN (Met1-Gly151), interacted with GAL-3 to induce lysosomal damage. Furthermore, the secreted OPN stimulated lysosomal damage by binding to CD44 in microglia in vitro. Collectively, this study demonstrated that upregulated OPN in microglia/macrophages and its cleavage product was able to interact with GAL-3, and secreted OPN combined with CD44, leading to lysosomal damage and exacerbating autophagosome accumulation after HI exposure. |
format | Online Article Text |
id | pubmed-10046941 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100469412023-03-29 Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage Gai, Chengcheng Zhao, Yijing Xin, Danqing Li, Tingting Cheng, Yahong Jiang, Zige Song, Yan Liu, Dexiang Wang, Zhen Cells Article We previously found that osteopontin (OPN) played a role in hypoxia–ischemia (HI) brain damage. However, its underlying mechanism is still unknown. Bioinformatics analysis revealed that the OPN protein was linked to the lysosomal cathepsin B (CTSB) and galectin-3 (GAL-3) proteins after HI exposure. In the present study, we tested the hypothesis that OPN was able to play a critical role in the lysosomal damage of microglia/macrophages following HI insult in neonatal mice. The results showed that OPN expression was enhanced, especially in microglia/macrophages, and colocalized with lysosomal-associated membrane protein 1 (LAMP1) and GAL-3; this was accompanied by increased LAMP1 and GAL-3 expression, CTSB leakage, as well as impairment of autophagic flux in the early stage of the HI process. In addition, the knockdown of OPN expression markedly restored lysosomal function with significant improvements in the autophagic flux after HI insult. Interestingly, cleavage of OPN was observed in the ipsilateral cortex following HI. The wild-type OPN and C-terminal OPN (Leu152-Asn294), rather than N-terminal OPN (Met1-Gly151), interacted with GAL-3 to induce lysosomal damage. Furthermore, the secreted OPN stimulated lysosomal damage by binding to CD44 in microglia in vitro. Collectively, this study demonstrated that upregulated OPN in microglia/macrophages and its cleavage product was able to interact with GAL-3, and secreted OPN combined with CD44, leading to lysosomal damage and exacerbating autophagosome accumulation after HI exposure. MDPI 2023-03-09 /pmc/articles/PMC10046941/ /pubmed/36980197 http://dx.doi.org/10.3390/cells12060854 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gai, Chengcheng Zhao, Yijing Xin, Danqing Li, Tingting Cheng, Yahong Jiang, Zige Song, Yan Liu, Dexiang Wang, Zhen Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage |
title | Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage |
title_full | Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage |
title_fullStr | Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage |
title_full_unstemmed | Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage |
title_short | Mechanistic Insights into the Role of OPN in Mediating Brain Damage via Triggering Lysosomal Damage in Microglia/Macrophage |
title_sort | mechanistic insights into the role of opn in mediating brain damage via triggering lysosomal damage in microglia/macrophage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046941/ https://www.ncbi.nlm.nih.gov/pubmed/36980197 http://dx.doi.org/10.3390/cells12060854 |
work_keys_str_mv | AT gaichengcheng mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT zhaoyijing mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT xindanqing mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT litingting mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT chengyahong mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT jiangzige mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT songyan mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT liudexiang mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage AT wangzhen mechanisticinsightsintotheroleofopninmediatingbraindamageviatriggeringlysosomaldamageinmicrogliamacrophage |