Cargando…

Stromal Senescence following Treatment with the CDK4/6 Inhibitor Palbociclib Alters the Lung Metastatic Niche and Increases Metastasis of Drug-Resistant Mammary Cancer Cells

SIMPLE SUMMARY: CDK4/6 inhibitors (CDKis) are a first-line treatment for metastatic hormone-receptor-positive breast cancer, but resistance frequently develops. One potential resistance mechanism could be induction of cellular senescence in non-tumor tissues. The aim of our study was to identify CDK...

Descripción completa

Detalles Bibliográficos
Autores principales: Gallanis, Gregory T., Sharif, Ghada M., Schmidt, Marcel O., Friedland, Benjamin N., Battina, Rohith, Rahhal, Raneen, Davis, John E., Khan, Irfan S., Wellstein, Anton, Riegel, Anna T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046966/
https://www.ncbi.nlm.nih.gov/pubmed/36980794
http://dx.doi.org/10.3390/cancers15061908
Descripción
Sumario:SIMPLE SUMMARY: CDK4/6 inhibitors (CDKis) are a first-line treatment for metastatic hormone-receptor-positive breast cancer, but resistance frequently develops. One potential resistance mechanism could be induction of cellular senescence in non-tumor tissues. The aim of our study was to identify CDKi-induced changes to host tissues that impact metastasis. Using mouse models, we found that pretreatment with palbociclib can increase metastatic seeding of CDKi-resistant mammary cancer cells in lungs and that this can be mitigated by eliminating senescent host cells. We describe palbociclib-induced gene expression changes in lungs that correlate with this effect and reveal altered intra-lung immune populations. Senescent endothelial cells are identifiable within lung metastases of mice pretreated with palbociclib. Palbociclib-treated primary endothelial cell lines become senescent and increase tumor cell migration and monocyte trans-endothelial invasion. These studies describe how CDKi-induced cellular senescence in host tissues could affect metastasis in breast cancer, which remains a key obstacle to achieving long-term survival. ABSTRACT: Background: CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease. Methods: We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis. Results: Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells. RNA sequencing analyses of lungs from non-tumor-bearing p16-INK-ATTAC mice identified that palbociclib downregulates immune-related gene sets and gene expression related to leukocyte migration. Concomitant senolysis reversed a portion of these effects, including pathway-level enrichment of TGF-β- and senescence-related signaling. CIBERSORTx analysis revealed that palbociclib alters intra-lung macrophage/monocyte populations. Notably, lung metastases from palbociclib-pretreated mice revealed senescent endothelial cells. Palbociclib-treated endothelial cells exhibit hallmark senescent features in vitro, upregulate genes involved with the senescence-associated secretory phenotype, leukocyte migration, and TGF-β-mediated paracrine senescence and induce tumor cell migration and monocyte trans-endothelial invasion in co-culture. Conclusions: These studies shed light on how stromal senescence induced by palbociclib affects lung metastasis, and they describe palbociclib-induced gene expression changes in the normal lung and endothelial cell models that correlate with changes in the tumor microenvironment in the lung metastatic niche.