Cargando…
Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review
Artificial intelligence (AI)-based computer-aided detection and diagnosis (CAD) is an important research area in radiology. However, only two narrative reviews about general uses of AI in pediatric radiology and AI-based CAD in pediatric chest imaging have been published yet. The purpose of this sys...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047006/ https://www.ncbi.nlm.nih.gov/pubmed/36980083 http://dx.doi.org/10.3390/children10030525 |
_version_ | 1785013813693644800 |
---|---|
author | Ng, Curtise K. C. |
author_facet | Ng, Curtise K. C. |
author_sort | Ng, Curtise K. C. |
collection | PubMed |
description | Artificial intelligence (AI)-based computer-aided detection and diagnosis (CAD) is an important research area in radiology. However, only two narrative reviews about general uses of AI in pediatric radiology and AI-based CAD in pediatric chest imaging have been published yet. The purpose of this systematic review is to investigate the AI-based CAD applications in pediatric radiology, their diagnostic performances and methods for their performance evaluation. A literature search with the use of electronic databases was conducted on 11 January 2023. Twenty-three articles that met the selection criteria were included. This review shows that the AI-based CAD could be applied in pediatric brain, respiratory, musculoskeletal, urologic and cardiac imaging, and especially for pneumonia detection. Most of the studies (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15; 80.0%, 8/10; 66.6%, 2/3; 84.2%, 16/19; 80.0%, 8/10) reported model performances of at least 0.83 (area under receiver operating characteristic curve), 0.84 (sensitivity), 0.80 (specificity), 0.89 (positive predictive value), 0.63 (negative predictive value), 0.87 (accuracy), and 0.82 (F1 score), respectively. However, a range of methodological weaknesses (especially a lack of model external validation) are found in the included studies. In the future, more AI-based CAD studies in pediatric radiology with robust methodology should be conducted for convincing clinical centers to adopt CAD and realizing its benefits in a wider context. |
format | Online Article Text |
id | pubmed-10047006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100470062023-03-29 Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review Ng, Curtise K. C. Children (Basel) Review Artificial intelligence (AI)-based computer-aided detection and diagnosis (CAD) is an important research area in radiology. However, only two narrative reviews about general uses of AI in pediatric radiology and AI-based CAD in pediatric chest imaging have been published yet. The purpose of this systematic review is to investigate the AI-based CAD applications in pediatric radiology, their diagnostic performances and methods for their performance evaluation. A literature search with the use of electronic databases was conducted on 11 January 2023. Twenty-three articles that met the selection criteria were included. This review shows that the AI-based CAD could be applied in pediatric brain, respiratory, musculoskeletal, urologic and cardiac imaging, and especially for pneumonia detection. Most of the studies (93.3%, 14/15; 77.8%, 14/18; 73.3%, 11/15; 80.0%, 8/10; 66.6%, 2/3; 84.2%, 16/19; 80.0%, 8/10) reported model performances of at least 0.83 (area under receiver operating characteristic curve), 0.84 (sensitivity), 0.80 (specificity), 0.89 (positive predictive value), 0.63 (negative predictive value), 0.87 (accuracy), and 0.82 (F1 score), respectively. However, a range of methodological weaknesses (especially a lack of model external validation) are found in the included studies. In the future, more AI-based CAD studies in pediatric radiology with robust methodology should be conducted for convincing clinical centers to adopt CAD and realizing its benefits in a wider context. MDPI 2023-03-08 /pmc/articles/PMC10047006/ /pubmed/36980083 http://dx.doi.org/10.3390/children10030525 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Ng, Curtise K. C. Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review |
title | Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review |
title_full | Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review |
title_fullStr | Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review |
title_full_unstemmed | Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review |
title_short | Diagnostic Performance of Artificial Intelligence-Based Computer-Aided Detection and Diagnosis in Pediatric Radiology: A Systematic Review |
title_sort | diagnostic performance of artificial intelligence-based computer-aided detection and diagnosis in pediatric radiology: a systematic review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047006/ https://www.ncbi.nlm.nih.gov/pubmed/36980083 http://dx.doi.org/10.3390/children10030525 |
work_keys_str_mv | AT ngcurtisekc diagnosticperformanceofartificialintelligencebasedcomputeraideddetectionanddiagnosisinpediatricradiologyasystematicreview |