Cargando…
Sleep Apnea Detection Using Wavelet Scattering Transformation and Random Forest Classifier
Obstructive Sleep Apnea (OSA) is a common sleep-breathing disorder that highly reduces the quality of human life. The most powerful method for the detection and classification of sleep apnea is the Polysomnogram. However, this method is time-consuming and cost-inefficient. Therefore, several methods...
Autor principal: | Sharaf, Ahmed I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047098/ https://www.ncbi.nlm.nih.gov/pubmed/36981288 http://dx.doi.org/10.3390/e25030399 |
Ejemplares similares
-
Wavelet Analysis of Overnight Airflow to Detect Obstructive Sleep Apnea in Children
por: Barroso-García, Verónica, et al.
Publicado: (2021) -
Wavelet Scattering Transform for ECG Beat Classification
por: Liu, Zhishuai, et al.
Publicado: (2020) -
Autodetection of J Wave Based on Random Forest with Synchrosqueezed Wavelet Transform
por: Li, Dengao, et al.
Publicado: (2018) -
Binaural Acoustic Scene Classification Using Wavelet Scattering, Parallel Ensemble Classifiers and Nonlinear Fusion
por: Hajihashemi, Vahid, et al.
Publicado: (2022) -
Pathological Brain Detection Using Weiner Filtering, 2D-Discrete Wavelet Transform, Probabilistic PCA, and Random Subspace Ensemble Classifier
por: Jha, Debesh, et al.
Publicado: (2017)