Cargando…
Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review
SIMPLE SUMMARY: Distinguishing between benign vs. malignant bone lesions is often difficult on imaging. Many bone lesions are infrequent or rarely seen, and often only specialist radiologists have sufficient expertise to provide an accurate diagnosis. In addition, some benign bone tumours may exhibi...
Autores principales: | Ong, Wilson, Zhu, Lei, Tan, Yi Liang, Teo, Ee Chin, Tan, Jiong Hao, Kumar, Naresh, Vellayappan, Balamurugan A., Ooi, Beng Chin, Quek, Swee Tian, Makmur, Andrew, Hallinan, James Thomas Patrick Decourcy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047175/ https://www.ncbi.nlm.nih.gov/pubmed/36980722 http://dx.doi.org/10.3390/cancers15061837 |
Ejemplares similares
-
Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis
por: Ong, Wilson, et al.
Publicado: (2022) -
State-of-the-Art Imaging Techniques in Metastatic Spinal Cord Compression
por: Kuah, Tricia, et al.
Publicado: (2022) -
Deep Learning Model for Classifying Metastatic Epidural Spinal Cord Compression on MRI
por: Hallinan, James Thomas Patrick Decourcy, et al.
Publicado: (2022) -
Diagnostic Accuracy of CT for Metastatic Epidural Spinal Cord Compression
por: Hallinan, James Thomas Patrick Decourcy, et al.
Publicado: (2022) -
Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT
por: Hallinan, James Thomas Patrick Decourcy, et al.
Publicado: (2022)