Cargando…

Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models

The performances of photomultiplier tube (PMT)-based dedicated breast positron emission tomography (PET) and silicon photomultiplier tube (SiPM)-based time-of-flight (TOF) PET, which is applicable not only to breast imaging but also to head imaging, were compared using a phantom study. A cylindrical...

Descripción completa

Detalles Bibliográficos
Autores principales: Satoh, Yoko, Hanaoka, Kohei, Ikegawa, Chihiro, Imai, Masamichi, Watanabe, Shota, Morimoto-Ishikawa, Daisuke, Onishi, Hiroshi, Ito, Toshikazu, Komoike, Yoshifumi, Ishii, Kazunari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047304/
https://www.ncbi.nlm.nih.gov/pubmed/36980385
http://dx.doi.org/10.3390/diagnostics13061079
_version_ 1785013887398051840
author Satoh, Yoko
Hanaoka, Kohei
Ikegawa, Chihiro
Imai, Masamichi
Watanabe, Shota
Morimoto-Ishikawa, Daisuke
Onishi, Hiroshi
Ito, Toshikazu
Komoike, Yoshifumi
Ishii, Kazunari
author_facet Satoh, Yoko
Hanaoka, Kohei
Ikegawa, Chihiro
Imai, Masamichi
Watanabe, Shota
Morimoto-Ishikawa, Daisuke
Onishi, Hiroshi
Ito, Toshikazu
Komoike, Yoshifumi
Ishii, Kazunari
author_sort Satoh, Yoko
collection PubMed
description The performances of photomultiplier tube (PMT)-based dedicated breast positron emission tomography (PET) and silicon photomultiplier tube (SiPM)-based time-of-flight (TOF) PET, which is applicable not only to breast imaging but also to head imaging, were compared using a phantom study. A cylindrical phantom containing four spheres (3–10 mm in diameter) filled with (18)F-FDG at two signal-to-background ratios (SBRs), 4:1 and 8:1, was scanned. The phantom images, which were reconstructed using three-dimensional list-mode dynamic row-action maximum likelihood algorithm with various β-values and post-smoothing filters, were visually and quantitatively compared. Visual evaluation showed that the 3 mm sphere was more clearly visualized with higher β and smaller post-filters, while the background was noisier; SiPM-based TOF-PET was superior to PMT-based dbPET in sharpness, smoothness, and detectability, although the background was noisier at the SBR of 8:1. Quantitative evaluation revealed that the detection index (DI) and recovery coefficient (CRC) of SiPM-based TOF-PET images were higher than those of PMT-based PET images, despite a higher background coefficient of variation (CV(BG)). The two organ-specific PET systems showed that a 3 mm lesion in the breast could be visualized at the center of the detector, and there was less noise in the SiPM-based TOF-PET image.
format Online
Article
Text
id pubmed-10047304
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100473042023-03-29 Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models Satoh, Yoko Hanaoka, Kohei Ikegawa, Chihiro Imai, Masamichi Watanabe, Shota Morimoto-Ishikawa, Daisuke Onishi, Hiroshi Ito, Toshikazu Komoike, Yoshifumi Ishii, Kazunari Diagnostics (Basel) Article The performances of photomultiplier tube (PMT)-based dedicated breast positron emission tomography (PET) and silicon photomultiplier tube (SiPM)-based time-of-flight (TOF) PET, which is applicable not only to breast imaging but also to head imaging, were compared using a phantom study. A cylindrical phantom containing four spheres (3–10 mm in diameter) filled with (18)F-FDG at two signal-to-background ratios (SBRs), 4:1 and 8:1, was scanned. The phantom images, which were reconstructed using three-dimensional list-mode dynamic row-action maximum likelihood algorithm with various β-values and post-smoothing filters, were visually and quantitatively compared. Visual evaluation showed that the 3 mm sphere was more clearly visualized with higher β and smaller post-filters, while the background was noisier; SiPM-based TOF-PET was superior to PMT-based dbPET in sharpness, smoothness, and detectability, although the background was noisier at the SBR of 8:1. Quantitative evaluation revealed that the detection index (DI) and recovery coefficient (CRC) of SiPM-based TOF-PET images were higher than those of PMT-based PET images, despite a higher background coefficient of variation (CV(BG)). The two organ-specific PET systems showed that a 3 mm lesion in the breast could be visualized at the center of the detector, and there was less noise in the SiPM-based TOF-PET image. MDPI 2023-03-13 /pmc/articles/PMC10047304/ /pubmed/36980385 http://dx.doi.org/10.3390/diagnostics13061079 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Satoh, Yoko
Hanaoka, Kohei
Ikegawa, Chihiro
Imai, Masamichi
Watanabe, Shota
Morimoto-Ishikawa, Daisuke
Onishi, Hiroshi
Ito, Toshikazu
Komoike, Yoshifumi
Ishii, Kazunari
Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models
title Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models
title_full Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models
title_fullStr Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models
title_full_unstemmed Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models
title_short Organ-Specific Positron Emission Tomography Scanners for Breast Imaging: Comparison between the Performances of Prior and Novel Models
title_sort organ-specific positron emission tomography scanners for breast imaging: comparison between the performances of prior and novel models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047304/
https://www.ncbi.nlm.nih.gov/pubmed/36980385
http://dx.doi.org/10.3390/diagnostics13061079
work_keys_str_mv AT satohyoko organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT hanaokakohei organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT ikegawachihiro organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT imaimasamichi organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT watanabeshota organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT morimotoishikawadaisuke organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT onishihiroshi organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT itotoshikazu organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT komoikeyoshifumi organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels
AT ishiikazunari organspecificpositronemissiontomographyscannersforbreastimagingcomparisonbetweentheperformancesofpriorandnovelmodels