Cargando…
CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p
Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analys...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047377/ https://www.ncbi.nlm.nih.gov/pubmed/36980172 http://dx.doi.org/10.3390/cells12060831 |
_version_ | 1785013907022151680 |
---|---|
author | Wang, Xuehui Wang, Jiaying An, Zihui Yang, Aifen Qiu, Mengsheng Tan, Zhou |
author_facet | Wang, Xuehui Wang, Jiaying An, Zihui Yang, Aifen Qiu, Mengsheng Tan, Zhou |
author_sort | Wang, Xuehui |
collection | PubMed |
description | Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analysis verified that the circXPO1 expression level was increased in both GBM tissues and cell lines. Functional studies demonstrated that the knockdown of circXPO1 in GBM cell lines repressed cell proliferation and migration; conversely, the overexpression of circXPO1 promoted the malignancy of GBM cells. In line with these findings, circXPO1 inhibition effectively suppressed gliomagenesis in the in situ transplantation model of nude mice. Through bioinformatic analyses and dual-luciferase reporter assays, we showed that circXPO1 directly bound to miR-7-5p, which acted as a tumor suppressor through the negative regulation of RAF1. In conclusion, our studies suggest that the circXPO1/miR-7-5p/RAF1 axis promotes brain tumor formation and may be a potential therapeutic target for GBM treatment. |
format | Online Article Text |
id | pubmed-10047377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100473772023-03-29 CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p Wang, Xuehui Wang, Jiaying An, Zihui Yang, Aifen Qiu, Mengsheng Tan, Zhou Cells Article Mounting evidence suggests that circular RNAs play important roles in the development and progression of cancers. However, their function in glioblastomas (GBM) is still unclear. By circRNA array analysis, we found that circXPO1 (hsa_circ_102737) was significantly upregulated in GBM, and qPCR analysis verified that the circXPO1 expression level was increased in both GBM tissues and cell lines. Functional studies demonstrated that the knockdown of circXPO1 in GBM cell lines repressed cell proliferation and migration; conversely, the overexpression of circXPO1 promoted the malignancy of GBM cells. In line with these findings, circXPO1 inhibition effectively suppressed gliomagenesis in the in situ transplantation model of nude mice. Through bioinformatic analyses and dual-luciferase reporter assays, we showed that circXPO1 directly bound to miR-7-5p, which acted as a tumor suppressor through the negative regulation of RAF1. In conclusion, our studies suggest that the circXPO1/miR-7-5p/RAF1 axis promotes brain tumor formation and may be a potential therapeutic target for GBM treatment. MDPI 2023-03-08 /pmc/articles/PMC10047377/ /pubmed/36980172 http://dx.doi.org/10.3390/cells12060831 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xuehui Wang, Jiaying An, Zihui Yang, Aifen Qiu, Mengsheng Tan, Zhou CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p |
title | CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p |
title_full | CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p |
title_fullStr | CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p |
title_full_unstemmed | CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p |
title_short | CircXPO1 Promotes Glioblastoma Malignancy by Sponging miR-7-5p |
title_sort | circxpo1 promotes glioblastoma malignancy by sponging mir-7-5p |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047377/ https://www.ncbi.nlm.nih.gov/pubmed/36980172 http://dx.doi.org/10.3390/cells12060831 |
work_keys_str_mv | AT wangxuehui circxpo1promotesglioblastomamalignancybyspongingmir75p AT wangjiaying circxpo1promotesglioblastomamalignancybyspongingmir75p AT anzihui circxpo1promotesglioblastomamalignancybyspongingmir75p AT yangaifen circxpo1promotesglioblastomamalignancybyspongingmir75p AT qiumengsheng circxpo1promotesglioblastomamalignancybyspongingmir75p AT tanzhou circxpo1promotesglioblastomamalignancybyspongingmir75p |