Cargando…
Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047403/ https://www.ncbi.nlm.nih.gov/pubmed/36980377 http://dx.doi.org/10.3390/diagnostics13061067 |
_version_ | 1785013914210140160 |
---|---|
author | Wang, Long Zhang, Ming He, Guangyuan Shen, Dong Meng, Mingzhu |
author_facet | Wang, Long Zhang, Ming He, Guangyuan Shen, Dong Meng, Mingzhu |
author_sort | Wang, Long |
collection | PubMed |
description | It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI). |
format | Online Article Text |
id | pubmed-10047403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100474032023-03-29 Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet Wang, Long Zhang, Ming He, Guangyuan Shen, Dong Meng, Mingzhu Diagnostics (Basel) Article It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fine-tuned models to differentiate malignant lesions from benign lesions in breast dynamic contrast-enhanced magnetic resonance images (DCE-MRI). MDPI 2023-03-11 /pmc/articles/PMC10047403/ /pubmed/36980377 http://dx.doi.org/10.3390/diagnostics13061067 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Long Zhang, Ming He, Guangyuan Shen, Dong Meng, Mingzhu Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet |
title | Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet |
title_full | Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet |
title_fullStr | Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet |
title_full_unstemmed | Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet |
title_short | Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet |
title_sort | classification of breast lesions on dce-mri data using a fine-tuned mobilenet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047403/ https://www.ncbi.nlm.nih.gov/pubmed/36980377 http://dx.doi.org/10.3390/diagnostics13061067 |
work_keys_str_mv | AT wanglong classificationofbreastlesionsondcemridatausingafinetunedmobilenet AT zhangming classificationofbreastlesionsondcemridatausingafinetunedmobilenet AT heguangyuan classificationofbreastlesionsondcemridatausingafinetunedmobilenet AT shendong classificationofbreastlesionsondcemridatausingafinetunedmobilenet AT mengmingzhu classificationofbreastlesionsondcemridatausingafinetunedmobilenet |