Cargando…
Classification of Breast Lesions on DCE-MRI Data Using a Fine-Tuned MobileNet
It is crucial to diagnose breast cancer early and accurately to optimize treatment. Presently, most deep learning models used for breast cancer detection cannot be used on mobile phones or low-power devices. This study intended to evaluate the capabilities of MobileNetV1 and MobileNetV2 and their fi...
Autores principales: | Wang, Long, Zhang, Ming, He, Guangyuan, Shen, Dong, Meng, Mingzhu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047403/ https://www.ncbi.nlm.nih.gov/pubmed/36980377 http://dx.doi.org/10.3390/diagnostics13061067 |
Ejemplares similares
-
Differentiation of breast lesions on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using deep transfer learning based on DenseNet201
por: Meng, Mingzhu, et al.
Publicado: (2022) -
A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection
por: Kaya, Yasin, et al.
Publicado: (2023) -
An End-to-End Steel Surface Classification Approach Based on EDCGAN and MobileNet V2
por: Jin, Ge, et al.
Publicado: (2023) -
Mobile-HR: An Ophthalmologic-Based Classification System for Diagnosis of Hypertensive Retinopathy Using Optimized MobileNet Architecture
por: Sajid, Muhammad Zaheer, et al.
Publicado: (2023) -
An Actinic Keratosis Auxiliary Diagnosis Method Based on an Enhanced MobileNet Model
por: Li, Shiyang, et al.
Publicado: (2023)