Cargando…

Cloning of Three Cytokinin Oxidase/Dehydrogenase Genes in Bambusa oldhamii

Cytokinin oxidase/dehydrogenase (CKX) catalyzes the irreversible breakdown of active cytokinins, which are a class of plant hormones that regulate cell division. According to conserved sequences of CKX genes from monocotyledons, PCR primers were designed to synthesize a probe for screening a bamboo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsieh, Chun-Yen, Hsieh, Lu-Sheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047441/
https://www.ncbi.nlm.nih.gov/pubmed/36975493
http://dx.doi.org/10.3390/cimb45030123
Descripción
Sumario:Cytokinin oxidase/dehydrogenase (CKX) catalyzes the irreversible breakdown of active cytokinins, which are a class of plant hormones that regulate cell division. According to conserved sequences of CKX genes from monocotyledons, PCR primers were designed to synthesize a probe for screening a bamboo genomic library. Cloned results of three genes encoding cytokinin oxidase were named as follows: BoCKX1, BoCKX2, and BoCKX3. In comparing the exon-intron structures among the above three genes, there are three exons and two introns in BoCKX1 and BoCKX3 genes, whereas BoCKX2 contains four exons and three introns. The amino acid sequence of BoCKX2 protein shares 78% and 79% identity with BoCKX1 and BoCKX3 proteins, respectively. BoCKX1 and BoCKX3 genes are particularly closely related given that the amino acid and nucleotide sequence identities are more than 90%. These three BoCKX proteins carried putative signal peptide sequences typical of secretion pathway, and a GHS-motif was found at N-terminal flavin adenine dinucleotide (FAD) binding domain, suggesting that BoCKX proteins might covalently conjugate with an FAD cofactor through a predicted histidine residue.