Cargando…
End-to-End Automatic Classification of Retinal Vessel Based on Generative Adversarial Networks with Improved U-Net
The retinal vessels in the human body are the only ones that can be observed directly by non-invasive imaging techniques. Retinal vessel morphology and structure are the important objects of concern for physicians in the early diagnosis and treatment of related diseases. The classification of retina...
Autores principales: | Zhang, Jieni, Yang, Kun, Shen, Zhufu, Sang, Shengbo, Yuan, Zhongyun, Hao, Runfang, Zhang, Qi, Cai, Meiling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047448/ https://www.ncbi.nlm.nih.gov/pubmed/36980456 http://dx.doi.org/10.3390/diagnostics13061148 |
Ejemplares similares
-
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
por: Wang, Jinke, et al.
Publicado: (2021) -
Retinal Vessel Automatic Segmentation Using SegNet
por: Xu, Xiaomei, et al.
Publicado: (2022) -
Generative Adversarial Network Combined with SE-ResNet and Dilated Inception Block for Segmenting Retinal Vessels
por: Yue, Chen, et al.
Publicado: (2022) -
SUGAN: A Stable U-Net Based Generative Adversarial Network
por: Cheng, Shijie, et al.
Publicado: (2023) -
Retracted: Retinal Vessel Automatic Segmentation Using SegNet
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023)