Cargando…
PreCoF: counterfactual explanations for fairness
This paper studies how counterfactual explanations can be used to assess the fairness of a model. Using machine learning for high-stakes decisions is a threat to fairness as these models can amplify bias present in the dataset, and there is no consensus on a universal metric to detect this. The appr...
Autores principales: | Goethals, Sofie, Martens, David, Calders, Toon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047477/ https://www.ncbi.nlm.nih.gov/pubmed/37363047 http://dx.doi.org/10.1007/s10994-023-06319-8 |
Ejemplares similares
-
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022) -
The Influence of Counterfactual Comparison on Fairness in Gain-Loss Contexts
por: Li, Qi, et al.
Publicado: (2017) -
GANterfactual—Counterfactual Explanations for Medical Non-experts Using Generative Adversarial Learning
por: Mertes, Silvan, et al.
Publicado: (2022) -
Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters
por: Dindorf, Carlo, et al.
Publicado: (2023) -
Counterfactual fairness: The case study of a food delivery platform’s reputational-ranking algorithm
por: Piccininni, Marco
Publicado: (2022)