Cargando…
Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features
Acute lymphoblastic leukemia (ALL) is one of the deadliest forms of leukemia due to the bone marrow producing many white blood cells (WBC). ALL is one of the most common types of cancer in children and adults. Doctors determine the treatment of leukemia according to its stages and its spread in the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047564/ https://www.ncbi.nlm.nih.gov/pubmed/36980334 http://dx.doi.org/10.3390/diagnostics13061026 |
_version_ | 1785013956948000768 |
---|---|
author | Ahmed, Ibrahim Abdulrab Senan, Ebrahim Mohammed Shatnawi, Hamzeh Salameh Ahmad Alkhraisha, Ziad Mohammad Al-Azzam, Mamoun Mohammad Ali |
author_facet | Ahmed, Ibrahim Abdulrab Senan, Ebrahim Mohammed Shatnawi, Hamzeh Salameh Ahmad Alkhraisha, Ziad Mohammad Al-Azzam, Mamoun Mohammad Ali |
author_sort | Ahmed, Ibrahim Abdulrab |
collection | PubMed |
description | Acute lymphoblastic leukemia (ALL) is one of the deadliest forms of leukemia due to the bone marrow producing many white blood cells (WBC). ALL is one of the most common types of cancer in children and adults. Doctors determine the treatment of leukemia according to its stages and its spread in the body. Doctors rely on analyzing blood samples under a microscope. Pathologists face challenges, such as the similarity between infected and normal WBC in the early stages. Manual diagnosis is prone to errors, differences of opinion, and the lack of experienced pathologists compared to the number of patients. Thus, computer-assisted systems play an essential role in assisting pathologists in the early detection of ALL. In this study, systems with high efficiency and high accuracy were developed to analyze the images of C-NMC 2019 and ALL-IDB2 datasets. In all proposed systems, blood micrographs were improved and then fed to the active contour method to extract WBC-only regions for further analysis by three CNN models (DenseNet121, ResNet50, and MobileNet). The first strategy for analyzing ALL images of the two datasets is the hybrid technique of CNN-RF and CNN-XGBoost. DenseNet121, ResNet50, and MobileNet models extract deep feature maps. CNN models produce high features with redundant and non-significant features. So, CNN deep feature maps were fed to the Principal Component Analysis (PCA) method to select highly representative features and sent to RF and XGBoost classifiers for classification due to the high similarity between infected and normal WBC in early stages. Thus, the strategy for analyzing ALL images using serially fused features of CNN models. The deep feature maps of DenseNet121-ResNet50, ResNet50-MobileNet, DenseNet121-MobileNet, and DenseNet121-ResNet50-MobileNet were merged and then classified by RF classifiers and XGBoost. The RF classifier with fused features for DenseNet121-ResNet50-MobileNet reached an AUC of 99.1%, accuracy of 98.8%, sensitivity of 98.45%, precision of 98.7%, and specificity of 98.85% for the C-NMC 2019 dataset. With the ALL-IDB2 dataset, hybrid systems achieved 100% results for AUC, accuracy, sensitivity, precision, and specificity. |
format | Online Article Text |
id | pubmed-10047564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100475642023-03-29 Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features Ahmed, Ibrahim Abdulrab Senan, Ebrahim Mohammed Shatnawi, Hamzeh Salameh Ahmad Alkhraisha, Ziad Mohammad Al-Azzam, Mamoun Mohammad Ali Diagnostics (Basel) Article Acute lymphoblastic leukemia (ALL) is one of the deadliest forms of leukemia due to the bone marrow producing many white blood cells (WBC). ALL is one of the most common types of cancer in children and adults. Doctors determine the treatment of leukemia according to its stages and its spread in the body. Doctors rely on analyzing blood samples under a microscope. Pathologists face challenges, such as the similarity between infected and normal WBC in the early stages. Manual diagnosis is prone to errors, differences of opinion, and the lack of experienced pathologists compared to the number of patients. Thus, computer-assisted systems play an essential role in assisting pathologists in the early detection of ALL. In this study, systems with high efficiency and high accuracy were developed to analyze the images of C-NMC 2019 and ALL-IDB2 datasets. In all proposed systems, blood micrographs were improved and then fed to the active contour method to extract WBC-only regions for further analysis by three CNN models (DenseNet121, ResNet50, and MobileNet). The first strategy for analyzing ALL images of the two datasets is the hybrid technique of CNN-RF and CNN-XGBoost. DenseNet121, ResNet50, and MobileNet models extract deep feature maps. CNN models produce high features with redundant and non-significant features. So, CNN deep feature maps were fed to the Principal Component Analysis (PCA) method to select highly representative features and sent to RF and XGBoost classifiers for classification due to the high similarity between infected and normal WBC in early stages. Thus, the strategy for analyzing ALL images using serially fused features of CNN models. The deep feature maps of DenseNet121-ResNet50, ResNet50-MobileNet, DenseNet121-MobileNet, and DenseNet121-ResNet50-MobileNet were merged and then classified by RF classifiers and XGBoost. The RF classifier with fused features for DenseNet121-ResNet50-MobileNet reached an AUC of 99.1%, accuracy of 98.8%, sensitivity of 98.45%, precision of 98.7%, and specificity of 98.85% for the C-NMC 2019 dataset. With the ALL-IDB2 dataset, hybrid systems achieved 100% results for AUC, accuracy, sensitivity, precision, and specificity. MDPI 2023-03-08 /pmc/articles/PMC10047564/ /pubmed/36980334 http://dx.doi.org/10.3390/diagnostics13061026 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ahmed, Ibrahim Abdulrab Senan, Ebrahim Mohammed Shatnawi, Hamzeh Salameh Ahmad Alkhraisha, Ziad Mohammad Al-Azzam, Mamoun Mohammad Ali Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features |
title | Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features |
title_full | Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features |
title_fullStr | Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features |
title_full_unstemmed | Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features |
title_short | Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features |
title_sort | hybrid techniques for the diagnosis of acute lymphoblastic leukemia based on fusion of cnn features |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047564/ https://www.ncbi.nlm.nih.gov/pubmed/36980334 http://dx.doi.org/10.3390/diagnostics13061026 |
work_keys_str_mv | AT ahmedibrahimabdulrab hybridtechniquesforthediagnosisofacutelymphoblasticleukemiabasedonfusionofcnnfeatures AT senanebrahimmohammed hybridtechniquesforthediagnosisofacutelymphoblasticleukemiabasedonfusionofcnnfeatures AT shatnawihamzehsalamehahmad hybridtechniquesforthediagnosisofacutelymphoblasticleukemiabasedonfusionofcnnfeatures AT alkhraishaziadmohammad hybridtechniquesforthediagnosisofacutelymphoblasticleukemiabasedonfusionofcnnfeatures AT alazzammamounmohammadali hybridtechniquesforthediagnosisofacutelymphoblasticleukemiabasedonfusionofcnnfeatures |