Cargando…
Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
Terahertz (THz) waves are widely used in the field of non-destructive testing (NDT). However, terahertz images have issues with limited spatial resolution and fuzzy features because of the constraints of the imaging equipment and imaging algorithms. To solve these problems, we propose a residual gen...
Autores principales: | Hou, Zhongwei, Cha, Xingzeng, An, Hongyu, Zhang, Aiyang, Lai, Dakun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047599/ https://www.ncbi.nlm.nih.gov/pubmed/36981329 http://dx.doi.org/10.3390/e25030440 |
Ejemplares similares
-
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
Improved Generative Adversarial Network for Super-Resolution Reconstruction of Coal Photomicrographs
por: Zou, Liang, et al.
Publicado: (2023) -
Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
por: Xu, Dan, et al.
Publicado: (2023) -
DVDR-SRGAN: Differential Value Dense Residual Super-Resolution Generative Adversarial Network
por: Qu, Hang, et al.
Publicado: (2023) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021)