Cargando…
A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer: A Two-Center Study
Purpose: This study aimed to establish a deep learning radiomics nomogram (DLRN) based on multiparametric MR images for predicting the response to neoadjuvant chemotherapy (NACT) in patients with locally advanced cervical cancer (LACC). Methods: Patients with LACC (FIGO stage IB-IIIB) who underwent...
Autores principales: | Zhang, Yajiao, Wu, Chao, Xiao, Zhibo, Lv, Furong, Liu, Yanbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047639/ https://www.ncbi.nlm.nih.gov/pubmed/36980381 http://dx.doi.org/10.3390/diagnostics13061073 |
Ejemplares similares
-
A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study
por: Cui, Yanfen, et al.
Publicado: (2022) -
Using Radiomics and Machine Learning Applied to MRI to Predict Response to Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer
por: Chiappa, Valentina, et al.
Publicado: (2023) -
Neoadjuvant chemotherapy for locally advanced cervical cancer
por: Iwata, Takashi, et al.
Publicado: (2016) -
Radiomic analysis for pretreatment prediction of response to neoadjuvant chemotherapy in locally advanced cervical cancer: A multicentre study
por: Sun, Caixia, et al.
Publicado: (2019) -
Prediction of Response to Preoperative Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer Using Multicenter CT-Based Radiomic Analysis
por: Tian, Xin, et al.
Publicado: (2020)