Cargando…
A Model for Diagnosing Autism Patients Using Spatial and Statistical Measures Using rs-fMRI and sMRI by Adopting Graphical Neural Networks
This article proposes a model to diagnose autism patients using graphical neural networks. A graphical neural network relates the subjects (nodes) using the features (edges). In our model, radiomic features obtained from sMRI are used as edges, and spatial-temporal data obtained through rs-fMRI are...
Autores principales: | Manikantan, Kiruthigha, Jaganathan, Suresh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047680/ https://www.ncbi.nlm.nih.gov/pubmed/36980452 http://dx.doi.org/10.3390/diagnostics13061143 |
Ejemplares similares
-
Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach
por: Zhang, Tingting, et al.
Publicado: (2021) -
Multi-Slice Generation sMRI and fMRI for Autism Spectrum Disorder Diagnosis Using 3D-CNN and Vision Transformers
por: Alharthi, Asrar G., et al.
Publicado: (2023) -
Combined analysis of sMRI and fMRI imaging data provides accurate disease markers for hearing impairment()
por: Tan, Lirong, et al.
Publicado: (2013) -
Combination of Resting State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA
por: Sui, Jing, et al.
Publicado: (2013) -
Prediction of violence in male schizophrenia using sMRI, based on machine learning algorithms
por: Yu, Tao, et al.
Publicado: (2022)