Cargando…
Stochastic Expectation Maximization Algorithm for Linear Mixed-Effects Model with Interactions in the Presence of Incomplete Data
The purpose of this paper is to propose a new algorithm based on stochastic expectation maximization (SEM) to deal with the problem of unobserved values when multiple interactions in a linear mixed-effects model (LMEM) are present. We test the effectiveness of the proposed algorithm with the stochas...
Autores principales: | Zakkour, Alandra, Perret, Cyril, Slaoui, Yousri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047691/ https://www.ncbi.nlm.nih.gov/pubmed/36981361 http://dx.doi.org/10.3390/e25030473 |
Ejemplares similares
-
Dynamic Expectation Maximization Algorithm for Estimation of Linear Systems with Colored Noise
por: Anil Meera, Ajith, et al.
Publicado: (2021) -
Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms
por: Zeng, Gengsheng L., et al.
Publicado: (2019) -
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training
por: Lam, Tin Y, et al.
Publicado: (2010) -
The Discrete Gaussian Expectation Maximization (Gradient) Algorithm for Differential Privacy
por: Wu, Weisan
Publicado: (2021) -
Clustering performance comparison using K-means and expectation maximization algorithms
por: Jung, Yong Gyu, et al.
Publicado: (2014)