Cargando…
Tri-Training Algorithm for Adaptive Nearest Neighbor Density Editing and Cross Entropy Evaluation
Tri-training expands the training set by adding pseudo-labels to unlabeled data, which effectively improves the generalization ability of the classifier, but it is easy to mislabel unlabeled data into training noise, which damages the learning efficiency of the classifier, and the explicit decision...
Autores principales: | Zhao, Jia, Luo, Yuhang, Xiao, Renbin, Wu, Runxiu, Fan, Tanghuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047771/ https://www.ncbi.nlm.nih.gov/pubmed/36981368 http://dx.doi.org/10.3390/e25030480 |
Ejemplares similares
-
Comparing distance metrics for rotation using the k-nearest neighbors algorithm for entropy estimation
por: Huggins, David J
Publicado: (2014) -
Nearest neighbor imputation algorithms: a critical evaluation
por: Beretta, Lorenzo, et al.
Publicado: (2016) -
Gravity-Matching Algorithm Based on K-Nearest Neighbor
por: Gao, Shuaipeng, et al.
Publicado: (2022) -
A Privacy Preserving Scheme for Nearest Neighbor Query
por: Wang, Yuhang, et al.
Publicado: (2018) -
Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples
por: Zhang, He-Hua, et al.
Publicado: (2016)