Cargando…
Learning Interactions in Reaction Diffusion Equations by Neural Networks
Partial differential equations are common models in biology for predicting and explaining complex behaviors. Nevertheless, deriving the equations and estimating the corresponding parameters remains challenging from data. In particular, the fine description of the interactions between species require...
Autores principales: | Chen, Sichen, Brunel, Nicolas J-B., Yang, Xin, Cui, Xinping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047802/ https://www.ncbi.nlm.nih.gov/pubmed/36981377 http://dx.doi.org/10.3390/e25030489 |
Ejemplares similares
-
Constrained Nonlinear and Mixed Effects Integral Differential Equation Models for Dynamic Cell Polarity Signaling
por: Xiao, Zhen, et al.
Publicado: (2022) -
Shock waves and reaction—diffusion equations
por: Smoller, Joel
Publicado: (1994) -
Shock waves and reaction—diffusion equations
por: Smoller, Joel
Publicado: (1983) -
Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations
por: Kadeethum, Teeratorn, et al.
Publicado: (2020) -
Dynamics of Fractional Delayed Reaction-Diffusion Equations
por: Liu, Linfang, et al.
Publicado: (2023)