Cargando…
Feature Fusion and Metric Learning Network for Zero-Shot Sketch-Based Image Retrieval
Zero-shot sketch-based image retrieval (ZS-SBIR) is an important computer vision problem. The image category in the test phase is a new category that was not visible in the training stage. Because sketches are extremely abstract, the commonly used backbone networks (such as VGG-16 and ResNet-50) can...
Autores principales: | Zhao, Honggang, Liu, Mingyue, Li, Mingyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047869/ https://www.ncbi.nlm.nih.gov/pubmed/36981390 http://dx.doi.org/10.3390/e25030502 |
Ejemplares similares
-
Zero-Shot Image Classification Based on a Learnable Deep Metric
por: Liu, Jingyi, et al.
Publicado: (2021) -
A zero-shot learning approach to the development of brain-computer interfaces for image retrieval
por: McCartney, Ben, et al.
Publicado: (2019) -
Zero-Shot Medical Image Retrieval for Emerging Infectious Diseases Based on Meta-Transfer Learning — Worldwide, 2020
por: Zhao, Yuying, et al.
Publicado: (2020) -
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023) -
Feature Selection Methods for Zero-Shot Learning of Neural Activity
por: Caceres, Carlos A., et al.
Publicado: (2017)