Cargando…
Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion
Compressive sensing is a sub-Nyquist sampling technique for efficient signal acquisition and reconstruction of sparse or compressible signals. In order to account for the sparsity of the underlying signal of interest, it is common to use sparsifying priors such as Bernoulli–Gaussian-inverse Gamma (B...
Autores principales: | Shekaramiz, Mohammad, Moon, Todd K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047912/ https://www.ncbi.nlm.nih.gov/pubmed/36981398 http://dx.doi.org/10.3390/e25030511 |
Ejemplares similares
-
Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns
por: Shekaramiz, Mohammad, et al.
Publicado: (2019) -
Heuristics as Bayesian inference under extreme priors
por: Parpart, Paula, et al.
Publicado: (2018) -
Objective Bayesian Inference in Probit Models with Intrinsic Priors Using Variational Approximations
por: Li, Ang, et al.
Publicado: (2020) -
Bayesian Inference in Auditing with Partial Prior Information Using Maximum Entropy Priors
por: Martel-Escobar, María, et al.
Publicado: (2018) -
Inference of epigenetic subnetworks by Bayesian regression with the incorporation of prior information
por: Jing, Anqi, et al.
Publicado: (2022)