Cargando…
Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends
Using a simulated gastrointestinal digestion model combined with a Caco-2 cell model, this study aims to assess the bioaccessibility and cellular uptake of dietary lutein, zeaxanthin, and ferulic acid from muffins and bread prepared from blends of hairless canary seed (HCS), wheat, and corn. Residua...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047919/ https://www.ncbi.nlm.nih.gov/pubmed/36981233 http://dx.doi.org/10.3390/foods12061307 |
_version_ | 1785014047540772864 |
---|---|
author | Abdel-Aal, El-Sayed M. Rabalski, Iwona Carey, Christine Gamel, Tamer H. |
author_facet | Abdel-Aal, El-Sayed M. Rabalski, Iwona Carey, Christine Gamel, Tamer H. |
author_sort | Abdel-Aal, El-Sayed M. |
collection | PubMed |
description | Using a simulated gastrointestinal digestion model combined with a Caco-2 cell model, this study aims to assess the bioaccessibility and cellular uptake of dietary lutein, zeaxanthin, and ferulic acid from muffins and bread prepared from blends of hairless canary seed (HCS), wheat, and corn. Residual digestive enzymes damaged the Caco-2 monolayer and necessitated the requirements for the additional clean-up of the digesta. Several digesta cleanup treatments were examined, and the C18 column, along with AEBSF inhibitor, was selected as the most effective treatment. However, the cleanup treatment reduced lutein, zeaxanthin, and ferulic acid concentrations. The bioaccessibility of lutein from muffins was high at 92–94% (without clean-up) and 81–86% (with cleanup); however, the cellular uptake was low (7–9%). The bioaccessibility and cellular uptake (4–11%) of zeaxanthin were lower than lutein. Ferulic acid from muffins exhibited a wide range of bioaccessibility for non-cleanup (105–229%) and clean-up (53–133%) digesta samples; however, cellular uptake was very low (0.5–1.8%). Bread made from wheat/HCS had higher lutein bioaccessibility (47–80%) than the control bread (42%), with an apical cellular uptake ranging from 4.3 to 9.2%. Similar to muffins, the bioaccessibility of zeaxanthin from bread was lower than lutein, while ferulic acid had a fairly high bioaccessibility at 98–103% (without clean-up) and 81–102% (with cleanup); however, zeaxanthin cellular uptake was low (0.2%). These results suggest that muffins and bread could boost the daily consumption of lutein, zeaxanthin, and ferulic acid, allowing for a small portion to be absorbed in the small intestine. |
format | Online Article Text |
id | pubmed-10047919 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100479192023-03-29 Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends Abdel-Aal, El-Sayed M. Rabalski, Iwona Carey, Christine Gamel, Tamer H. Foods Article Using a simulated gastrointestinal digestion model combined with a Caco-2 cell model, this study aims to assess the bioaccessibility and cellular uptake of dietary lutein, zeaxanthin, and ferulic acid from muffins and bread prepared from blends of hairless canary seed (HCS), wheat, and corn. Residual digestive enzymes damaged the Caco-2 monolayer and necessitated the requirements for the additional clean-up of the digesta. Several digesta cleanup treatments were examined, and the C18 column, along with AEBSF inhibitor, was selected as the most effective treatment. However, the cleanup treatment reduced lutein, zeaxanthin, and ferulic acid concentrations. The bioaccessibility of lutein from muffins was high at 92–94% (without clean-up) and 81–86% (with cleanup); however, the cellular uptake was low (7–9%). The bioaccessibility and cellular uptake (4–11%) of zeaxanthin were lower than lutein. Ferulic acid from muffins exhibited a wide range of bioaccessibility for non-cleanup (105–229%) and clean-up (53–133%) digesta samples; however, cellular uptake was very low (0.5–1.8%). Bread made from wheat/HCS had higher lutein bioaccessibility (47–80%) than the control bread (42%), with an apical cellular uptake ranging from 4.3 to 9.2%. Similar to muffins, the bioaccessibility of zeaxanthin from bread was lower than lutein, while ferulic acid had a fairly high bioaccessibility at 98–103% (without clean-up) and 81–102% (with cleanup); however, zeaxanthin cellular uptake was low (0.2%). These results suggest that muffins and bread could boost the daily consumption of lutein, zeaxanthin, and ferulic acid, allowing for a small portion to be absorbed in the small intestine. MDPI 2023-03-19 /pmc/articles/PMC10047919/ /pubmed/36981233 http://dx.doi.org/10.3390/foods12061307 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Abdel-Aal, El-Sayed M. Rabalski, Iwona Carey, Christine Gamel, Tamer H. Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends |
title | Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends |
title_full | Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends |
title_fullStr | Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends |
title_full_unstemmed | Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends |
title_short | Bioaccessibility and Cellular Uptake of Lutein, Zeaxanthin and Ferulic Acid from Muffins and Breads Made from Hairless Canary Seed, Wheat and Corn Blends |
title_sort | bioaccessibility and cellular uptake of lutein, zeaxanthin and ferulic acid from muffins and breads made from hairless canary seed, wheat and corn blends |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047919/ https://www.ncbi.nlm.nih.gov/pubmed/36981233 http://dx.doi.org/10.3390/foods12061307 |
work_keys_str_mv | AT abdelaalelsayedm bioaccessibilityandcellularuptakeofluteinzeaxanthinandferulicacidfrommuffinsandbreadsmadefromhairlesscanaryseedwheatandcornblends AT rabalskiiwona bioaccessibilityandcellularuptakeofluteinzeaxanthinandferulicacidfrommuffinsandbreadsmadefromhairlesscanaryseedwheatandcornblends AT careychristine bioaccessibilityandcellularuptakeofluteinzeaxanthinandferulicacidfrommuffinsandbreadsmadefromhairlesscanaryseedwheatandcornblends AT gameltamerh bioaccessibilityandcellularuptakeofluteinzeaxanthinandferulicacidfrommuffinsandbreadsmadefromhairlesscanaryseedwheatandcornblends |