Cargando…
Deep Learning-Based Feature Extraction with MRI Data in Neuroimaging Genetics for Alzheimer’s Disease
The prognosis and treatment of patients suffering from Alzheimer’s disease (AD) have been among the most important and challenging problems over the last few decades. To better understand the mechanism of AD, it is of great interest to identify genetic variants associated with brain atrophy. Commonl...
Autores principales: | Chakraborty, Dipnil, Zhuang, Zhong, Xue, Haoran, Fiecas, Mark B., Shen, Xiatong, Pan, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047952/ https://www.ncbi.nlm.nih.gov/pubmed/36980898 http://dx.doi.org/10.3390/genes14030626 |
Ejemplares similares
-
Deep Learning with Neuroimaging and Genomics in Alzheimer’s Disease
por: Lin, Eugene, et al.
Publicado: (2021) -
Spatiotemporal feature extraction and classification of Alzheimer’s disease using deep learning 3D-CNN for fMRI data
por: Parmar, Harshit, et al.
Publicado: (2020) -
Neuroimaging feature extraction using a neural network classifier for imaging genetics
por: Beaulac, Cédric, et al.
Publicado: (2023) -
Neuroimaging Modalities in Alzheimer’s Disease: Diagnosis and Clinical Features
por: Kim, JunHyun, et al.
Publicado: (2022) -
A Systems Biology Approach for Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer’s Disease
por: Golriz Khatami, Sepehr, et al.
Publicado: (2021)