Cargando…

Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier

In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Met...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaheed, Kashif, Szczuko, Piotr, Abbas, Qaisar, Hussain, Ayyaz, Albathan, Mubarak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047954/
https://www.ncbi.nlm.nih.gov/pubmed/36981494
http://dx.doi.org/10.3390/healthcare11060837
Descripción
Sumario:In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia. First, a pre-processing method based on a Gaussian filter and logarithmic operator is applied to input chest X-ray (CXR) images to improve the poor-quality images by enhancing the contrast, reducing the noise, and smoothing the image. Second, robust features are extracted from each enhanced chest X-ray image using a Convolutional Neural Network (CNNs) transformer and an optimal collection of grey-level co-occurrence matrices (GLCM) that contain features such as contrast, correlation, entropy, and energy. Finally, based on extracted features from input images, a random forest machine learning classifier is used to classify images into three classes, such as COVID-19, pneumonia, or normal. The predicted output from the model is combined with Gradient-weighted Class Activation Mapping (Grad-CAM) visualisation for diagnosis. (3) Results: Our work is evaluated using public datasets with three different train–test splits (70–30%, 80–20%, and 90–10%) and achieved an average accuracy, F1 score, recall, and precision of 97%, 96%, 96%, and 96%, respectively. A comparative study shows that our proposed method outperforms existing and similar work. The proposed approach can be utilised to screen COVID-19-infected patients effectively. (4) Conclusions: A comparative study with the existing methods is also performed. For performance evaluation, metrics such as accuracy, sensitivity, and F1-measure are calculated. The performance of the proposed method is better than that of the existing methodologies, and it can thus be used for the effective diagnosis of the disease.