Cargando…
Extraction of Important Factors in a High-Dimensional Data Space: An Application for High-Growth Firms
We introduce a new non-black-box method of extracting multiple areas in a high-dimensional big data space where data points that satisfy specific conditions are highly concentrated. First, we extract one-dimensional areas where the data that satisfy specific conditions are mostly gathered by using t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047971/ https://www.ncbi.nlm.nih.gov/pubmed/36981376 http://dx.doi.org/10.3390/e25030488 |