Cargando…

Competing Endogenous RNA Regulatory Networks of hsa_circ_0126672 in Pathophysiology of Coronary Heart Disease

Coronary heart disease (CHD) is a global health concern, and its molecular origin is not fully elucidated. Dysregulation of ncRNAs has been linked to many metabolic and infectious diseases. This study aimed to explore the role of circRNAs in the pathogenesis of CHD and predicted a candidate circRNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafiq, Muhammad, Dandare, Abdullahi, Javed, Arham, Liaquat, Afrose, Raja, Afraz Ahmad, Awan, Hassaan Mehboob, Khan, Muhammad Jawad, Naeem, Aisha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10047999/
https://www.ncbi.nlm.nih.gov/pubmed/36980823
http://dx.doi.org/10.3390/genes14030550
Descripción
Sumario:Coronary heart disease (CHD) is a global health concern, and its molecular origin is not fully elucidated. Dysregulation of ncRNAs has been linked to many metabolic and infectious diseases. This study aimed to explore the role of circRNAs in the pathogenesis of CHD and predicted a candidate circRNA that could be targeted for therapeutic approaches to the disease. circRNAs associated with CHD were identified and CHD gene expression profiles were obtained, and analyzed with GEO2R. In addition, differentially expressed miRNA target genes (miR-DEGs) were identified and subjected to functional enrichment analysis. Networks of circRNA/miRNA/mRNA and the miRNA/affected pathways were constructed. Furthermore, a miRNA/mRNA homology study was performed. We identified that hsa_circ_0126672 was strongly associated with the CHD pathology by competing for endogenous RNA (ceRNA) mechanisms. hsa_circ_0126672 characteristically sponges miR-145-5p, miR-186-5p, miR-548c-3p, miR-7-5p, miR-495-3p, miR-203a-3p, and miR-21. Up-regulation of has_circ_0126672 affected various CHD-related cellular functions, such as atherosclerosis, JAK/STAT, and Apelin signaling pathways. Our results also revealed a perfect and stable interaction for the hybrid of miR-145-5p with NOS1 and RPS6KB1. Finally, miR-145-5p had the highest degree of interaction with the validated small molecules. Henchashsa_circ_0126672 and target miRNAs, notably miR-145-5p, could be good candidates for the diagnosis and therapeutic approaches to CHD.