Cargando…

Skew Constacyclic Codes over a Non-Chain Ring

In this paper, we investigate the algebraic structure of the non-local ring [Formula: see text] and identify the automorphisms of this ring to study the algebraic structure of the skew constacyclic codes and their duals over this ring. Furthermore, we give a necessary and sufficient condition for th...

Descripción completa

Detalles Bibliográficos
Autores principales: Köroğlu, Mehmet Emin, Sarı, Mustafa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048002/
https://www.ncbi.nlm.nih.gov/pubmed/36981412
http://dx.doi.org/10.3390/e25030525
Descripción
Sumario:In this paper, we investigate the algebraic structure of the non-local ring [Formula: see text] and identify the automorphisms of this ring to study the algebraic structure of the skew constacyclic codes and their duals over this ring. Furthermore, we give a necessary and sufficient condition for the skew constacyclic codes over [Formula: see text] to be linear complementary dual (LCD). We present some examples of Euclidean LCD codes over [Formula: see text] and tabulate the parameters of Euclidean LCD codes over finite fields as the [Formula: see text]-images of these codes over [Formula: see text] , which are almost maximum distance separable (MDS) and near MDS. Eventually, by making use of Hermitian linear complementary duals of skew constacyclic codes over [Formula: see text] and the map [Formula: see text] , we give a class of entanglement-assisted quantum error correcting codes (EAQECCs) with maximal entanglement and tabulate parameters of some EAQECCs with maximal entanglement over finite fields.