Cargando…
Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels
(1) Background: Infections of pathogenic microorganisms can be life-threatening due to delayed healing or even worsening conditions in tissue engineering and regenerative medicine. The excessive presence of reactive oxygen species in damaged and infected tissues causes a negative inflammatory respon...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048004/ https://www.ncbi.nlm.nih.gov/pubmed/36975632 http://dx.doi.org/10.3390/gels9030183 |
_version_ | 1785014072016633856 |
---|---|
author | Song, Geun-Jin Choi, Yeon-Su Hwang, Hee-Sook Lee, Chung-Sung |
author_facet | Song, Geun-Jin Choi, Yeon-Su Hwang, Hee-Sook Lee, Chung-Sung |
author_sort | Song, Geun-Jin |
collection | PubMed |
description | (1) Background: Infections of pathogenic microorganisms can be life-threatening due to delayed healing or even worsening conditions in tissue engineering and regenerative medicine. The excessive presence of reactive oxygen species in damaged and infected tissues causes a negative inflammatory response, resulting in failed healing. Thus, the development of hydrogels with antibacterial and antioxidant abilities for the treatment of infectious tissues is in high demand. (2) Methods: We herein describe the development of green-synthesized silver-composited polydopamine nanoparticles (AgNPs), which are fabricated by the self-assembly of dopamine as a reducing and antioxidant agent in the presence of silver ions. (3) Results: The facile and green-synthesized AgNPs have a nanoscale diameter with mostly spherical shapes, with various shapes coexisting. The particles are stable in an aqueous solution for up to 4 weeks. In addition, remarkable antibacterial activity against Gram-positive and -negative bacterial strains and antioxidant capabilities were evaluated by in vitro assays. When incorporated into biomaterial hydrogels at concentrations above 2 mg L(−1), the hydrogels produced powerful antibacterial effects. (4) Conclusions: This study describes a biocompatible hydrogel with antibacterial and antioxidant activities from the introduction of facile and green-synthesized AgNPs as a safer tool for the treatment of damaged tissues. |
format | Online Article Text |
id | pubmed-10048004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100480042023-03-29 Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels Song, Geun-Jin Choi, Yeon-Su Hwang, Hee-Sook Lee, Chung-Sung Gels Article (1) Background: Infections of pathogenic microorganisms can be life-threatening due to delayed healing or even worsening conditions in tissue engineering and regenerative medicine. The excessive presence of reactive oxygen species in damaged and infected tissues causes a negative inflammatory response, resulting in failed healing. Thus, the development of hydrogels with antibacterial and antioxidant abilities for the treatment of infectious tissues is in high demand. (2) Methods: We herein describe the development of green-synthesized silver-composited polydopamine nanoparticles (AgNPs), which are fabricated by the self-assembly of dopamine as a reducing and antioxidant agent in the presence of silver ions. (3) Results: The facile and green-synthesized AgNPs have a nanoscale diameter with mostly spherical shapes, with various shapes coexisting. The particles are stable in an aqueous solution for up to 4 weeks. In addition, remarkable antibacterial activity against Gram-positive and -negative bacterial strains and antioxidant capabilities were evaluated by in vitro assays. When incorporated into biomaterial hydrogels at concentrations above 2 mg L(−1), the hydrogels produced powerful antibacterial effects. (4) Conclusions: This study describes a biocompatible hydrogel with antibacterial and antioxidant activities from the introduction of facile and green-synthesized AgNPs as a safer tool for the treatment of damaged tissues. MDPI 2023-02-27 /pmc/articles/PMC10048004/ /pubmed/36975632 http://dx.doi.org/10.3390/gels9030183 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Geun-Jin Choi, Yeon-Su Hwang, Hee-Sook Lee, Chung-Sung Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels |
title | Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels |
title_full | Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels |
title_fullStr | Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels |
title_full_unstemmed | Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels |
title_short | Silver-Composited Polydopamine Nanoparticles: Antibacterial and Antioxidant Potential in Nanocomposite Hydrogels |
title_sort | silver-composited polydopamine nanoparticles: antibacterial and antioxidant potential in nanocomposite hydrogels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048004/ https://www.ncbi.nlm.nih.gov/pubmed/36975632 http://dx.doi.org/10.3390/gels9030183 |
work_keys_str_mv | AT songgeunjin silvercompositedpolydopaminenanoparticlesantibacterialandantioxidantpotentialinnanocompositehydrogels AT choiyeonsu silvercompositedpolydopaminenanoparticlesantibacterialandantioxidantpotentialinnanocompositehydrogels AT hwangheesook silvercompositedpolydopaminenanoparticlesantibacterialandantioxidantpotentialinnanocompositehydrogels AT leechungsung silvercompositedpolydopaminenanoparticlesantibacterialandantioxidantpotentialinnanocompositehydrogels |