Cargando…
Cell Type Annotation Model Selection: General-Purpose vs. Pattern-Aware Feature Gene Selection in Single-Cell RNA-Seq Data †
With the advances in high-throughput sequencing technology, an increasing amount of research in revealing heterogeneity among cells has been widely performed. Differences between individual cells’ functionality are determined based on the differences in the gene expression profiles. Although the obs...
Autores principales: | Vasighizaker, Akram, Trivedi, Yash, Rueda, Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048047/ https://www.ncbi.nlm.nih.gov/pubmed/36980868 http://dx.doi.org/10.3390/genes14030596 |
Ejemplares similares
-
Discovering cell types using manifold learning and enhanced visualization of single-cell RNA-Seq data
por: Vasighizaker, Akram, et al.
Publicado: (2022) -
Purposeful selection of variables in logistic regression
por: Bursac, Zoran, et al.
Publicado: (2008) -
A novel one-class classification approach to accurately predict disease-gene association in acute myeloid leukemia cancer
por: Vasighizaker, Akram, et al.
Publicado: (2019) -
Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
por: Townes, F. William, et al.
Publicado: (2019) -
Unsupervised cell functional annotation for single-cell RNA-seq
por: Li, Dongshunyi, et al.
Publicado: (2022)