Cargando…
Analyzing the Effect of Imputation on Classification Performance under MCAR and MAR Missing Mechanisms
Many datasets in statistical analyses contain missing values. As omitting observations containing missing entries may lead to information loss or greatly reduce the sample size, imputation is usually preferable. However, imputation can also introduce bias and impact the quality and validity of subse...
Autores principales: | Buczak, Philip, Chen, Jian-Jia, Pauly, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048089/ https://www.ncbi.nlm.nih.gov/pubmed/36981409 http://dx.doi.org/10.3390/e25030521 |
Ejemplares similares
-
Assumptions and analysis planning in studies with missing data in multiple variables: moving beyond the MCAR/MAR/MNAR classification
por: Lee, Katherine J, et al.
Publicado: (2023) -
On the Relation between Prediction and Imputation Accuracy under Missing Covariates
por: Ramosaj, Burim, et al.
Publicado: (2022) -
Prediction of Residual Stroke Risk in Anticoagulated Patients with Atrial Fibrillation: mCARS
por: Ding, Wern Yew, et al.
Publicado: (2021) -
A new analytical framework for missing data imputation and classification with uncertainty: Missing data imputation and heart failure readmission prediction
por: Hu, Zhiyong, et al.
Publicado: (2020) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008)