Cargando…

A Comparison of Entropic Diversity and Variance in the Study of Population Structure

AMOVA is a widely used approach that focuses on variance within and among strata to study the hierarchical genetic structure of populations. The recently developed Shannon Informational Diversity Translation Analysis (SIDTA) instead tackles exploration of hierarchical genetic structure using entropi...

Descripción completa

Detalles Bibliográficos
Autor principal: Karlin, Eric F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048111/
https://www.ncbi.nlm.nih.gov/pubmed/36981380
http://dx.doi.org/10.3390/e25030492
_version_ 1785014098389368832
author Karlin, Eric F.
author_facet Karlin, Eric F.
author_sort Karlin, Eric F.
collection PubMed
description AMOVA is a widely used approach that focuses on variance within and among strata to study the hierarchical genetic structure of populations. The recently developed Shannon Informational Diversity Translation Analysis (SIDTA) instead tackles exploration of hierarchical genetic structure using entropic allelic diversity. A mix of artificial and natural population data sets (including allopolyploids) is used to compare the performance of SIDTA (a ‘q = 1’ diversity measure) vs. AMOVA (a ‘q = 2’ measure) under different conditions. An additive allelic differentiation index based on entropic allelic diversity measuring the mean difference among populations (Ω(AP)) was developed to facilitate the comparison of SIDTA with AMOVA. These analyses show that the genetic population structure seen by AMOVA is notably different in many ways from that provided by SIDTA, and the extent of this difference is greatly affected by the stability of the markers employed. Negative among group values are lacking with SIDTA but occur with AMOVA, especially with allopolyploids. To provide more focus on measuring allelic differentiation among populations, additional measures were also tested including Bray–Curtis Genetic Differentiation (BCGD) and several expected heterozygosity-based indices (e.g., G(ST), G″(ST), Jost’s D, and D(EST)). Corrections, such as almost unbiased estimators, that were designed to work with heterozygosity-based fixation indices (e.g., F(ST), G(ST)) are problematic when applied to differentiation indices (eg., D(EST), G″(ST), G′(ST)H).
format Online
Article
Text
id pubmed-10048111
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100481112023-03-29 A Comparison of Entropic Diversity and Variance in the Study of Population Structure Karlin, Eric F. Entropy (Basel) Article AMOVA is a widely used approach that focuses on variance within and among strata to study the hierarchical genetic structure of populations. The recently developed Shannon Informational Diversity Translation Analysis (SIDTA) instead tackles exploration of hierarchical genetic structure using entropic allelic diversity. A mix of artificial and natural population data sets (including allopolyploids) is used to compare the performance of SIDTA (a ‘q = 1’ diversity measure) vs. AMOVA (a ‘q = 2’ measure) under different conditions. An additive allelic differentiation index based on entropic allelic diversity measuring the mean difference among populations (Ω(AP)) was developed to facilitate the comparison of SIDTA with AMOVA. These analyses show that the genetic population structure seen by AMOVA is notably different in many ways from that provided by SIDTA, and the extent of this difference is greatly affected by the stability of the markers employed. Negative among group values are lacking with SIDTA but occur with AMOVA, especially with allopolyploids. To provide more focus on measuring allelic differentiation among populations, additional measures were also tested including Bray–Curtis Genetic Differentiation (BCGD) and several expected heterozygosity-based indices (e.g., G(ST), G″(ST), Jost’s D, and D(EST)). Corrections, such as almost unbiased estimators, that were designed to work with heterozygosity-based fixation indices (e.g., F(ST), G(ST)) are problematic when applied to differentiation indices (eg., D(EST), G″(ST), G′(ST)H). MDPI 2023-03-13 /pmc/articles/PMC10048111/ /pubmed/36981380 http://dx.doi.org/10.3390/e25030492 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Karlin, Eric F.
A Comparison of Entropic Diversity and Variance in the Study of Population Structure
title A Comparison of Entropic Diversity and Variance in the Study of Population Structure
title_full A Comparison of Entropic Diversity and Variance in the Study of Population Structure
title_fullStr A Comparison of Entropic Diversity and Variance in the Study of Population Structure
title_full_unstemmed A Comparison of Entropic Diversity and Variance in the Study of Population Structure
title_short A Comparison of Entropic Diversity and Variance in the Study of Population Structure
title_sort comparison of entropic diversity and variance in the study of population structure
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048111/
https://www.ncbi.nlm.nih.gov/pubmed/36981380
http://dx.doi.org/10.3390/e25030492
work_keys_str_mv AT karlinericf acomparisonofentropicdiversityandvarianceinthestudyofpopulationstructure
AT karlinericf comparisonofentropicdiversityandvarianceinthestudyofpopulationstructure