Cargando…
Efficient Selection of Gaussian Kernel SVM Parameters for Imbalanced Data
For medical data mining, the development of a class prediction model has been widely used to deal with various kinds of data classification problems. Classification models especially for high-dimensional gene expression datasets have attracted many researchers in order to identify marker genes for d...
Autores principales: | Tsai, Chen-An, Chang, Yu-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048125/ https://www.ncbi.nlm.nih.gov/pubmed/36980852 http://dx.doi.org/10.3390/genes14030583 |
Ejemplares similares
-
Weighted Feature Gaussian Kernel SVM for Emotion Recognition
por: Wei, Wei, et al.
Publicado: (2016) -
Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection
por: Wang, Shunfang, et al.
Publicado: (2017) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020) -
A Novel Ensemble Method for Imbalanced Data Learning: Bagging of Extrapolation-SMOTE SVM
por: Wang, Qi, et al.
Publicado: (2017) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018)