Cargando…
An Entropy-Based Directed Random Walk for Cancer Classification Using Gene Expression Data Based on Bi-Random Walk on Two Separated Networks
The integration of microarray technologies and machine learning methods has become popular in predicting the pathological condition of diseases and discovering risk genes. Traditional microarray analysis considers pathways as a simple gene set, treating all genes in the pathway identically while ign...
Autores principales: | Tay, Xin Hui, Kasim, Shahreen, Sutikno, Tole, Fudzee, Mohd Farhan Md, Hassan, Rohayanti, Patah Akhir, Emelia Akashah, Aziz, Norshakirah, Seah, Choon Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048140/ https://www.ncbi.nlm.nih.gov/pubmed/36980844 http://dx.doi.org/10.3390/genes14030574 |
Ejemplares similares
-
An enhanced topologically significant directed random walk in cancer classification using gene expression datasets
por: Seah, Choon Sen, et al.
Publicado: (2017) -
Network-based Phenome-Genome Association Prediction by Bi-Random Walk
por: Xie, MaoQiang, et al.
Publicado: (2015) -
Neutral quasispecies evolution and the maximal entropy random walk
por: Smerlak, M.
Publicado: (2021) -
Drug repositioning based on individual bi-random walks on a heterogeneous network
por: Wang, Yuehui, et al.
Publicado: (2019) -
A tensor-based bi-random walks model for protein function prediction
por: Hu, Sai, et al.
Publicado: (2022)