Cargando…

SCP4ssd: A Serverless Platform for Nucleotide Sequence Synthesis Difficulty Prediction Using an AutoML Model

DNA synthesis is widely used in synthetic biology to construct and assemble sequences ranging from short RBS to ultra-long synthetic genomes. Many sequence features, such as the GC content and repeat sequences, are known to affect the synthesis difficulty and subsequently the synthesis cost. In addi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jianqi, Ren, Shuai, Shi, Zhenkui, Wang, Ruoyu, Li, Haoran, Tian, Huijuan, Feng, Miao, Liao, Xiaoping, Ma, Hongwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048150/
https://www.ncbi.nlm.nih.gov/pubmed/36980878
http://dx.doi.org/10.3390/genes14030605
Descripción
Sumario:DNA synthesis is widely used in synthetic biology to construct and assemble sequences ranging from short RBS to ultra-long synthetic genomes. Many sequence features, such as the GC content and repeat sequences, are known to affect the synthesis difficulty and subsequently the synthesis cost. In addition, there are latent sequence features, especially local characteristics of the sequence, which might affect the DNA synthesis process as well. Reliable prediction of the synthesis difficulty for a given sequence is important for reducing the cost, but this remains a challenge. In this study, we propose a new automated machine learning (AutoML) approach to predict the DNA synthesis difficulty, which achieves an F1 score of 0.930 and outperforms the current state-of-the-art model. We found local sequence features that were neglected in previous methods, which might also affect the difficulty of DNA synthesis. Moreover, experimental validation based on ten genes of Escherichia coli strain MG1655 shows that our model can achieve an 80% accuracy, which is also better than the state of art. Moreover, we developed the cloud platform SCP4SSD using an entirely cloud-based serverless architecture for the convenience of the end users.