Cargando…
RNNCon: Contribution Coverage Testing for Stacked Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are applied in safety-critical fields such as autonomous driving, aircraft collision detection, and smart credit. They are highly susceptible to input perturbations, but little research on RNN-oriented testing techniques has been conducted, leaving a threat to a larg...
Autores principales: | Du, Xiaoli, Zeng, Hongwei, Chen, Shengbo, Lei, Zhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048185/ https://www.ncbi.nlm.nih.gov/pubmed/36981408 http://dx.doi.org/10.3390/e25030520 |
Ejemplares similares
-
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network
por: Zhang, Buzhong, et al.
Publicado: (2018) -
Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction
por: Rabby, Md Fazle, et al.
Publicado: (2021) -
Use of Artificial Neural Networks to Optimize Stacking Sequence in UHMWPE Protections
por: Peinado, Jairo, et al.
Publicado: (2021) -
A Stacked BiLSTM Neural Network Based on Coattention Mechanism for Question Answering
por: Cai, Linqin, et al.
Publicado: (2019) -
View of stacking test.
por: Ansaldo
Publicado: (2000)