Cargando…
Explainable Machine Learning to Predict Successful Weaning of Mechanical Ventilation in Critically Ill Patients Requiring Hemodialysis
Lungs and kidneys are two vital and frequently injured organs among critically ill patients. In this study, we attempt to develop a weaning prediction model for patients with both respiratory and renal failure using an explainable machine learning (XML) approach. We used the eICU collaborative resea...
Autores principales: | Lin, Ming-Yen, Chang, Yuan-Ming, Li, Chi-Chun, Chao, Wen-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048210/ https://www.ncbi.nlm.nih.gov/pubmed/36981566 http://dx.doi.org/10.3390/healthcare11060910 |
Ejemplares similares
-
Explainable Machine Learning to Predict Successful Weaning Among Patients Requiring Prolonged Mechanical Ventilation: A Retrospective Cohort Study in Central Taiwan
por: Lin, Ming-Yen, et al.
Publicado: (2021) -
Explainable machine learning approach to predict extubation in critically ill ventilated patients: a retrospective study in central Taiwan
por: Pai, Kai-Chih, et al.
Publicado: (2022) -
Explainable machine learning to predict long-term mortality in critically ill ventilated patients: a retrospective study in central Taiwan
por: Chan, Ming-Cheng, et al.
Publicado: (2022) -
Weaning unit and prolonged mechanical ventilation after critical illness
por: Rubio Mateo-Sidron, JA, et al.
Publicado: (2015) -
Distinct Subtyping of Successful Weaning from Acute Kidney Injury Requiring Renal Replacement Therapy by Consensus Clustering in Critically Ill Patients
por: Pan, Heng-Chih, et al.
Publicado: (2022)