Cargando…
An Improved Deep Reinforcement Learning Method for Dispatch Optimization Strategy of Modern Power Systems
As a promising information theory, reinforcement learning has gained much attention. This paper researches a wind-storage cooperative decision-making strategy based on dueling double deep Q-network (D3QN). Firstly, a new wind-storage cooperative model is proposed. Besides wind farms, energy storage...
Autores principales: | Zhai, Suwei, Li, Wenyun, Qiu, Zhenyu, Zhang, Xinyi, Hou, Shixi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048285/ https://www.ncbi.nlm.nih.gov/pubmed/36981434 http://dx.doi.org/10.3390/e25030546 |
Ejemplares similares
-
Energy Dispatch for CCHP System in Summer Based on Deep Reinforcement Learning
por: Gao, Wenzhong, et al.
Publicado: (2023) -
Multi-task dispatch of shared autonomous electric vehicles for Mobility-on-Demand services – combination of deep reinforcement learning and combinatorial optimization method
por: Wang, Ning, et al.
Publicado: (2022) -
Joint Optimization of Bandwidth and Power Allocation in Uplink Systems with Deep Reinforcement Learning
por: Zhang, Chongli, et al.
Publicado: (2023) -
Urban public bicycle dispatching optimization method
por: Lin, Fei, et al.
Publicado: (2019) -
Dispatches from Blogistan: a travel guide for the modern blogger
por: Stefanac, Suzanne
Publicado: (2006)