Cargando…

Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes

SSR (simple sequence repeat) DNA markers are widely used for genotype DNA identification, QTL mapping, and analyzing genetic biodiversity. However, SSRs in grapes are still in their early stages, with a few primer pairs accessible. With the whole-genome sequencing (WGS) of several grape varieties, c...

Descripción completa

Detalles Bibliográficos
Autores principales: Pei, Dan, Song, Siyan, Kang, Jun, Zhang, Chuan, Wang, Jing, Dong, Tianyu, Ge, Mengqing, Pervaiz, Tariq, Zhang, Peian, Fang, Jinggui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048371/
https://www.ncbi.nlm.nih.gov/pubmed/36980935
http://dx.doi.org/10.3390/genes14030663
Descripción
Sumario:SSR (simple sequence repeat) DNA markers are widely used for genotype DNA identification, QTL mapping, and analyzing genetic biodiversity. However, SSRs in grapes are still in their early stages, with a few primer pairs accessible. With the whole-genome sequencing (WGS) of several grape varieties, characterization of grape SSR changed to be necessary not only to genomics but to also help SSR development and utility. Based on this, we identified the whole-genome SSR of nine grape cultivars (‘PN40024’, ‘Cabernet Sauvignon’, ‘Carménère’, ‘Chardonnay’, ‘Merlot’, ‘Riesling’, ‘Zinfandel’, ‘Shine Muscat’, and ‘Muscat Hamburg’) with whole-genome sequences released publicly and found that there are great differences in the distribution of SSR loci in different varieties. According to the difference in genome size, the number of SSRs ranged from 267,385 (Cabernet Sauvignon) to 627,429 (Carménère), the density of the SSR locus in the genome of nine cultivars was generally 1 per Kb. SSR motif distribution characteristic analysis of these grape cultivars showed that the distribution patterns among grape cultivars were conservative, mainly enriched in A/T. However, there are some differences in motif types (especially tetranucleotides, pentanucleotides, and hexanucleotides), quantity, total length, and average length in different varieties, which might be related to the size of the assembled genome or the specificity of variety domestication. The distribution characteristics of SSRs were revealed by whole-genome analysis of simple repeats of grape varieties. In this study, 32 pairs of primers with lower polymorphism have been screened, which provided an important research foundation for the development of molecular markers of grape variety identification and the construction of linkage maps of important agronomic traits for crop improvement.