Cargando…
PLDP-FL: Federated Learning with Personalized Local Differential Privacy
As a popular machine learning method, federated learning (FL) can effectively solve the issues of data silos and data privacy. However, traditional federated learning schemes cannot provide sufficient privacy protection. Furthermore, most secure federated learning schemes based on local differential...
Autores principales: | Shen, Xiaoying, Jiang, Hang, Chen, Yange, Wang, Baocang, Gao, Le |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048376/ https://www.ncbi.nlm.nih.gov/pubmed/36981374 http://dx.doi.org/10.3390/e25030485 |
Ejemplares similares
-
Communication-Efficient and Privacy-Preserving Verifiable Aggregation for Federated Learning
por: Peng, Kaixin, et al.
Publicado: (2023) -
OpenFL: the open federated learning library
por: Foley, Patrick, et al.
Publicado: (2022) -
Federated learning and differential privacy for medical image analysis
por: Adnan, Mohammed, et al.
Publicado: (2022) -
A Differential Privacy Strategy Based on Local Features of Non-Gaussian Noise in Federated Learning
por: Wang, Xinyi, et al.
Publicado: (2022) -
FL-PMI: Federated Learning-Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems
por: Arikumar, K. S., et al.
Publicado: (2022)