Cargando…
Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault
Blind deconvolution is a method that can effectively improve the fault characteristics of rolling bearings. However, the existing blind deconvolution methods have shortcomings in practical applications. The minimum entropy deconvolution (MED) and the optimal minimum entropy deconvolution adjusted (O...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048393/ https://www.ncbi.nlm.nih.gov/pubmed/36981430 http://dx.doi.org/10.3390/e25030543 |
_version_ | 1785014172265742336 |
---|---|
author | Tian, Tian Tang, Gui-Ji Tian, Yin-Chu Wang, Xiao-Long |
author_facet | Tian, Tian Tang, Gui-Ji Tian, Yin-Chu Wang, Xiao-Long |
author_sort | Tian, Tian |
collection | PubMed |
description | Blind deconvolution is a method that can effectively improve the fault characteristics of rolling bearings. However, the existing blind deconvolution methods have shortcomings in practical applications. The minimum entropy deconvolution (MED) and the optimal minimum entropy deconvolution adjusted (OMEDA) are susceptible to extreme values. Furthermore, maximum correlated kurtosis deconvolution (MCKD) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) are required prior knowledge of faults. On the basis of the periodicity and impact of bearing fault signals, a new deconvolution algorithm, namely one based on maximum correlation spectral negentropy (CSNE), which adopts the particle swarm optimization (PSO) algorithm to solve the filter coefficients, is proposed in this paper. Verified by the simulated vibration model signal and the experimental simulation signal, the PSO–CSNE algorithm proposed in this paper overcomes the influence of harmonic signals and random pulse signals more effectively than other blind deconvolution algorithms when prior knowledge of the fault is unknown. |
format | Online Article Text |
id | pubmed-10048393 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100483932023-03-29 Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault Tian, Tian Tang, Gui-Ji Tian, Yin-Chu Wang, Xiao-Long Entropy (Basel) Article Blind deconvolution is a method that can effectively improve the fault characteristics of rolling bearings. However, the existing blind deconvolution methods have shortcomings in practical applications. The minimum entropy deconvolution (MED) and the optimal minimum entropy deconvolution adjusted (OMEDA) are susceptible to extreme values. Furthermore, maximum correlated kurtosis deconvolution (MCKD) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) are required prior knowledge of faults. On the basis of the periodicity and impact of bearing fault signals, a new deconvolution algorithm, namely one based on maximum correlation spectral negentropy (CSNE), which adopts the particle swarm optimization (PSO) algorithm to solve the filter coefficients, is proposed in this paper. Verified by the simulated vibration model signal and the experimental simulation signal, the PSO–CSNE algorithm proposed in this paper overcomes the influence of harmonic signals and random pulse signals more effectively than other blind deconvolution algorithms when prior knowledge of the fault is unknown. MDPI 2023-03-21 /pmc/articles/PMC10048393/ /pubmed/36981430 http://dx.doi.org/10.3390/e25030543 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tian, Tian Tang, Gui-Ji Tian, Yin-Chu Wang, Xiao-Long Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault |
title | Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault |
title_full | Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault |
title_fullStr | Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault |
title_full_unstemmed | Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault |
title_short | Blind Deconvolution Based on Correlation Spectral Negentropy for Bearing Fault |
title_sort | blind deconvolution based on correlation spectral negentropy for bearing fault |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048393/ https://www.ncbi.nlm.nih.gov/pubmed/36981430 http://dx.doi.org/10.3390/e25030543 |
work_keys_str_mv | AT tiantian blinddeconvolutionbasedoncorrelationspectralnegentropyforbearingfault AT tangguiji blinddeconvolutionbasedoncorrelationspectralnegentropyforbearingfault AT tianyinchu blinddeconvolutionbasedoncorrelationspectralnegentropyforbearingfault AT wangxiaolong blinddeconvolutionbasedoncorrelationspectralnegentropyforbearingfault |