Cargando…
Remote Sensing Image of The Landsat 8–9 Compressive Sensing via Non-Local Low-Rank Regularization with the Laplace Function
Utilizing low-rank prior data in compressed sensing (CS) schemes for Landsat 8–9 remote sensing images (RSIs) has recently received widespread attention. Nevertheless, most CS algorithms focus on the sparsity of an RSI and ignore its low-rank (LR) nature. Therefore, this paper proposes a new CS reco...
Autores principales: | Li, Guibing, Jin, Weidong, Miao, Jiaqing, Tan, Ying, Li, Yingling, Zhang, Weixuan, Li, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048400/ https://www.ncbi.nlm.nih.gov/pubmed/36981411 http://dx.doi.org/10.3390/e25030523 |
Ejemplares similares
-
Tracking Red Palm Mite Damage in the Western Hemisphere Invasion with Landsat Remote Sensing Data
por: Rodrigues, Jose Carlos Verle, et al.
Publicado: (2020) -
Image Compressive Sensing via Hybrid Nonlocal Sparsity Regularization
por: Li, Lizhao, et al.
Publicado: (2020) -
Compressive Sensing via Nonlocal Smoothed Rank Function
por: Fan, Ya-Ru, et al.
Publicado: (2016) -
Landscape ecological risk assessment of an ecological area in the Kubuqi desert based on Landsat remote sensing data
por: Zhang, Jie, et al.
Publicado: (2023) -
Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data
por: Myint, Soe W., et al.
Publicado: (2008)