Cargando…
An Order Reduction Design Framework for Higher-Order Binary Markov Random Fields
The order reduction method is an important approach to optimize higher-order binary Markov random fields (HoMRFs), which are widely used in information theory, machine learning and image analysis. It transforms an HoMRF into an equivalent and easier reduced first-order binary Markov random field (RM...
Autores principales: | Chen, Zhuo, Yang, Hongyu, Liu, Yanli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048417/ https://www.ncbi.nlm.nih.gov/pubmed/36981423 http://dx.doi.org/10.3390/e25030535 |
Ejemplares similares
-
Bayesian Analysis of First-Order Markov Models for Autocorrelated Binary Responses
por: Lee, Dasom, et al.
Publicado: (2022) -
Mechanosynthesis of Higher‐Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design
por: Ng, Zi Xuan, et al.
Publicado: (2021) -
Using higher-order Markov models to reveal flow-based communities in networks
por: Salnikov, Vsevolod, et al.
Publicado: (2016) -
Higher order terms in the analysis of gravitational waves from binary pulsars
por: Olsen, J E, et al.
Publicado: (1995) -
Markov fields over countable partially ordered sets: extrema and splitting
por: Evstigneev, IV, et al.
Publicado: (1994)