Cargando…
A New Quantum Private Protocol for Set Intersection Cardinality Based on a Quantum Homomorphic Encryption Scheme for Toffoli Gate
Set Intersection Cardinality (SI-CA) computes the intersection cardinality of two parties’ sets, which has many important and practical applications such as data mining and data analysis. However, in the face of big data sets, it is difficult for two parties to execute the SI-CA protocol repeatedly....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048431/ https://www.ncbi.nlm.nih.gov/pubmed/36981404 http://dx.doi.org/10.3390/e25030516 |
Sumario: | Set Intersection Cardinality (SI-CA) computes the intersection cardinality of two parties’ sets, which has many important and practical applications such as data mining and data analysis. However, in the face of big data sets, it is difficult for two parties to execute the SI-CA protocol repeatedly. In order to reduce the execution pressure, a Private Set Intersection Cardinality (PSI-CA) protocol based on a quantum homomorphic encryption scheme for the Toffoli gate is proposed. Two parties encode their private sets into two quantum sequences and encrypt their sequences by way of a quantum homomorphic encryption scheme. After receiving the encrypted results, the semi-honest third party (TP) can determine the equality of two quantum sequences with the Toffoli gate and decrypted keys. The simulation of the quantum homomorphic encryption scheme for the Toffoli gate on two quantum bits is given by the IBM Quantum Experience platform. The simulation results show that the scheme can also realize the corresponding function on two quantum sequences. |
---|