Cargando…
A Robust and High-Dimensional Clustering Algorithm Based on Feature Weight and Entropy
Since the Fuzzy C-Means algorithm is incapable of considering the influence of different features and exponential constraints on high-dimensional and complex data, a fuzzy clustering algorithm based on non-Euclidean distance combining feature weights and entropy weights is proposed. The proposed alg...
Autor principal: | Du, Xinzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048533/ https://www.ncbi.nlm.nih.gov/pubmed/36981399 http://dx.doi.org/10.3390/e25030510 |
Ejemplares similares
-
GARS: Genetic Algorithm for the identification of a Robust Subset of features in high-dimensional datasets
por: Chiesa, Mattia, et al.
Publicado: (2020) -
Entropy-Based Clustering Algorithm for Fingerprint Singular Point Detection
por: Le, Ngoc Tuyen, et al.
Publicado: (2019) -
Dimensionality, Granularity, and Differential Residual Weighted Entropy
por: Tunnicliffe, Martin, et al.
Publicado: (2019) -
Feature Selection for High-Dimensional and Imbalanced Biomedical Data Based on Robust Correlation Based Redundancy and Binary Grasshopper Optimization Algorithm
por: Abdulrauf Sharifai, Garba, et al.
Publicado: (2020) -
An Ensemble Outlier Detection Method Based on Information Entropy-Weighted Subspaces for High-Dimensional Data
por: Li, Zihao, et al.
Publicado: (2023)